On Budgeting and Quality

With an Application to Safety-Critical Real-Time Systems

Bader Alahmad & Sathish Gopalakrishnan

The University of British Columbia

Budgeting vs. Quality

Goal: Maintain a certain QoS level for the long-term operation of the system with high confidence

modulo perhaps initial transient behavior

>> **Recurrent** tasks with given periods

- >> **Recurrent** tasks with given periods
- \gg Task has random execution-time **demand** X_e

- >> **Recurrent** tasks with given periods
- \gg Task has random execution-time **demand** X_e
- \rightarrow Available **budget** is random variable X_b

- >> **Recurrent** tasks with given periods
- \gg Task has random execution-time **demand** X_e
- \gg Available **budget** is random variable X_b
- $\gg X_e$ and X_b **not** necessarily independent

- >> **Recurrent** tasks with given periods
- \gg Task has random execution-time **demand** X_e
- \gg Available **budget** is random variable X_b
- X_e and X_b **not** necessarily independent
- \gg **Bad** situation: $X_e > X_b$, central quantity: $\mathbb{P}(X_e > X_b)$

$$F_n = \frac{1}{n} \sum_{i=1}^n \mathbf{1} \{X_e^i > X_b^i\}$$
: Fraction of first n jobs where budget is insufficient

$$F_n = \frac{1}{n} \sum_{i=1}^n \mathbf{1} \{X_e^i > X_b^i\}$$
: Fraction of first n jobs where budget is insufficient

>> The process $\left\{(X_e^t,X_b^t)\right\}_{t\in\mathbb{R}_+}$ is iid, sampled at **job release times** $iP,i\in\{0,1,\ldots\}$

$$F_n = rac{1}{n} \sum_{i=1}^n \mathbf{1} \{X_e^i > X_b^i\}$$
: Fraction of first n jobs where budget is insufficient

- >> The process $\left\{(X_e^t,X_b^t)\right\}_{t\in\mathbb{R}_+}$ is iid, sampled at **job release times** $iP,i\in\{0,1,\ldots\}$
- >> Given:

$$F_n = rac{1}{n} \sum_{i=1}^n \mathbf{1} \{X_e^i > X_b^i\}$$
: Fraction of first n jobs where budget is insufficient

- >> The process $\left\{(X_e^t,X_b^t)\right\}_{t\in\mathbb{R}_+}$ is iid, sampled at **job release times** $iP,i\in\{0,1,\ldots\}$
- >> Given:
 - >> **QoS level** $\alpha \in (0,1]$: Tolerable fraction of jobs that might demand more than available budget

$$F_n = rac{1}{n} \sum_{i=1}^n \mathbf{1} \{X_e^i > X_b^i\}$$
: Fraction of first n jobs where budget is insufficient

- \gg The process $\{(X_e^t, X_b^t)\}_{t\in\mathbb{R}_+}$ is iid, sampled at **job release times** $iP, i\in\{0,1,\ldots\}$
- >> Given:
 - >> **QoS level** $\alpha \in (0,1]$: Tolerable fraction of jobs that might demand more than available budget
 - \rightarrow **Confidence** parameter $\beta \in (0,1)$

$$F_n = rac{1}{n} \sum_{i=1}^n \mathbf{1} \{X_e^i > X_b^i\}$$
: Fraction of first n jobs where budget is insufficient

- >> The process $\left\{(X_e^t,X_b^t)\right\}_{t\in\mathbb{R}_+}$ is iid, sampled at **job release times** $iP,i\in\{0,1,\ldots\}$
- » Given:
 - >> **QoS level** $\alpha \in (0,1]$: Tolerable fraction of jobs that might demand more than available budget
 - \rightarrow **Confidence** parameter $\beta \in (0,1)$
- \Rightarrow **Question:** Is there integer $m \ge 0$ s.t. $\mathbb{P}(F_n \ge \alpha) \le \beta \ \forall n \ge m$ jobs of the task?

Resource Dimensioning

If we know the execution-time requirement X_e , how should the budget X_b look like so that for some m, $\mathbb{P}(F_n \ge \alpha) \le \beta$ for all $n \ge m$?

Recast. If we let $p \equiv \mathbb{P}(X_e > X_b)$: Derive a bound p^+ on p so that if $p \leq p^+$, then QoS requirement satisfied.

- **Recast.** If we let $p \equiv \mathbb{P}(X_e > X_b)$: Derive a bound p^+ on p so that if $p \leq p^+$, then QoS requirement satisfied.
- >> Then any budget X_b satisfying $p \leq p^+$ is okay

- >> **Recast.** If we let $p \equiv \mathbb{P}(X_e > X_b)$: Derive a bound p^+ on p so that if $p \leq p^+$, then QoS requirement satisfied.
- >> Then any budget X_b satisfying $p \leq p^+$ is okay
 - \rightarrow We have a sufficient range $(0, p^+)$

- >> **Recast.** If we let $p \equiv \mathbb{P}(X_e > X_b)$: Derive a bound p^+ on p so that if $p \leq p^+$, then QoS requirement satisfied.
- >> Then any budget X_b satisfying $p \leq p^+$ is okay
 - \rightarrow We have a sufficient range $(0, p^+)$
 - >> The larger the p^+ , the more the flexibility the system designer has in allocating resources (budgets)

>> **Requirement:** Strongest possible bound

- >> **Requirement:** Strongest possible bound
 - $\gg \mathbb{P}(F_n \geq \alpha)$ decays exponentially quickly in n

- >> **Requirement:** Strongest possible bound
 - $\gg \mathbb{P}(F_n \geq \alpha)$ decays exponentially quickly in n
 - >> Gives the largest possible sufficient bound p^+ on $p\equiv \mathbb{P}(X_e>X_b)$

- >> **Requirement:** Strongest possible bound
 - $\gg \mathbb{P}(F_n \geq \alpha)$ decays exponentially quickly in n
 - >> Gives the largest possible sufficient bound p^+ on $p\equiv \mathbb{P}(X_e>X_b)$
- >> Requirement made precise: Is there strictly positive function I (that might depend on α) such that

$$\mathbb{P}(F_n \geq lpha) pprox e^{-nI}$$
 ?

Chernoff Theorem

Let Y_1, \ldots, Y_n be independent random variables such that Y_i always lies in the interval [0,1]. Define $S_n = \sum_{i=1}^n Y_i$, and let $\mu = \mathbb{E}(S_n)$. Then for any $\delta > 0$,

$$\mathbb{P}ig(S_n \geq (1+\delta)\muig) \leq igg(rac{e^{\delta}}{(1+\delta)^{(1+\delta)}}igg)^{\mu} \leq \expigg(-rac{\delta^2}{2+\delta}\muigg)$$

Chernoff bound: $\mathbb{P}ig(S_n \geq (1+\delta)\muig) \leq \expigg(-rac{\delta^2}{2+\delta}\muigg) \quad (\delta>0)$

Chernoff bound:
$$\mathbb{P}ig(S_n \geq (1+\delta)\muig) \leq \expigg(-rac{\delta^2}{2+\delta}\muigg) \quad (\delta>0)$$

$$\gg Y_i = \mathbf{1}ig\{X_e^i > X_b^iig\}$$

Chernoff bound:
$$\mathbb{P}ig(S_n \geq (1+\delta)\muig) \leq \expigg(-rac{\delta^2}{2+\delta}\muigg) \quad (\delta > 0)$$

$$>> Y_i = \mathbf{1}ig\{X_e^i > X_b^iig\}$$

$$\gg~S_n = \sum_{i=1}^n Y_i$$

Chernoff bound:
$$\mathbb{P}ig(S_n \geq (1+\delta)\muig) \leq \expigg(-rac{\delta^2}{2+\delta}\muigg) \quad (\delta>0)$$

$$\gg Y_i = \mathbf{1}ig\{X_e^i > X_b^iig\}$$

$$\gg S_n = \sum_{i=1}^n Y_i$$

$$p=\mathbb{E}(Y_i)=\mathbb{P}(X_e^i>X_b^i)$$

Chernoff bound:
$$\mathbb{P}ig(S_n \geq (1+\delta)\muig) \leq \expigg(-rac{\delta^2}{2+\delta}\muigg) \quad (\delta>0)$$

$$\gg Y_i = \mathbf{1}ig\{X_e^i > X_b^iig\}$$

$$\gg S_n = \sum_{i=1}^n Y_i$$

$$p=\mathbb{E}(Y_i)=\mathbb{P}(X_e^i>X_b^i)$$

$$>> \mu = \mathbb{E}(S_n) = np$$

Chernoff bound:
$$\mathbb{P}ig(S_n \geq (1+\delta)\muig) \leq \expigg(-rac{\delta^2}{2+\delta}\muigg) \quad (\delta>0)$$

$$\gg Y_i = \mathbf{1}ig\{X_e^i > X_b^iig\}$$

$$\gg S_n = \sum_{i=1}^n Y_i$$

$$p=\mathbb{E}(Y_i)=\mathbb{P}(X_e^i>X_b^i)$$

$$>> \ \mu = \mathbb{E}(S_n) = np$$

$$\gg F_n = S_n/n$$

Chernoff bound:
$$\mathbb{P}ig(S_n \geq (1+\delta)\muig) \leq \expigg(-rac{\delta^2}{2+\delta}\muigg) \quad (\delta>0)$$

$$\gg Y_i = \mathbf{1}ig\{X_e^i > X_b^iig\}$$

$$\gg S_n = \sum_{i=1}^n Y_i$$

$$p=\mathbb{E}(Y_i)=\mathbb{P}(X_e^i>X_b^i)$$

$$>> \ \mu = \mathbb{E}(S_n) = np$$

$$\gg F_n = S_n/n$$

$$\Rightarrow$$
 If $0 , then setting $\delta = -1 + \alpha/p$ gives $\delta > 0$$

Chernoff bound:
$$\mathbb{P}ig(S_n \geq (1+\delta)\muig) \leq \expigg(-rac{\delta^2}{2+\delta}\muigg) \quad (\delta>0)$$

$$\gg Y_i = \mathbf{1}ig\{X_e^i > X_b^iig\}$$

$$\gg S_n = \sum_{i=1}^n Y_i$$

$$>> p = \mathbb{E}(Y_i) = \mathbb{P}(X_e^i > X_b^i)$$

$$>> \mu = \mathbb{E}(S_n) = np$$

$$\gg F_n = S_n/n$$

$$\Rightarrow$$
 If $0 , then setting $\delta = -1 + \alpha/p$ gives $\delta > 0$$

$$\mathbb{P}ig(S_n \geq (1-1+lpha/p)npig) = \mathbb{P}ig(F_n \geq lphaig) \leq \expigg(-rac{(lpha-p)^2}{lpha+p}nigg)$$

Our Large Deviation Bound

$$\text{If } 0$$

Upper bound on p-value $\mathbb{P}(X_e > X_b)$

Let $\gamma(\beta, m) = \ln(1/\beta)/m$. If $\alpha > \gamma(\beta, m)$, then

$$p^+=p^+(m)=rac{\gamma(eta,m)+2lpha-\sqrt{\gamma(eta,m)^2+8lpha\gamma(eta,m)}}{2}>0.$$

Observe: $p^+(m) < \alpha$ for every m, and $p^+(m) \uparrow \alpha$ as $m \uparrow \infty$

System-wide QoS

Dependent Tasks

>> Given:

 \gg System-wide confidence Q > 0;

- \rightarrow System-wide confidence Q > 0;
- \gg Task QoS levels $\alpha_1, \ldots, \alpha_N$;

- \rightarrow System-wide confidence Q > 0;
- \gg Task QoS levels $\alpha_1, \ldots, \alpha_N$;
- \gg "limiting" number of job releases m_j of task $j, j \in [N]$;

- \rightarrow System-wide confidence Q > 0;
- \gg Task QoS levels $\alpha_1, \ldots, \alpha_N$;
- \gg "limiting" number of job releases m_j of task $j, j \in [N]$;
- \gg That at most d tasks are dependent

- \rightarrow System-wide confidence Q > 0;
- \gg Task QoS levels $\alpha_1, \ldots, \alpha_N$;
- \gg "limiting" number of job releases m_j of task $j, j \in [N]$;
- \gg That at most d tasks are dependent
- >> \mathbf{Bad} event for task j: $B_j\equiv \left\{F_n^j\geq lpha_j
 ight\}$, where $F_n^j=rac{1}{n}\sum_{i=1}^n\mathbf{1}ig\{X_{e,j}^i>X_{b,j}^iig\}$

- \rightarrow System-wide confidence Q > 0;
- \gg Task QoS levels $\alpha_1, \ldots, \alpha_N$;
- \gg "limiting" number of job releases m_j of task $j, j \in [N]$;
- \gg That at most d tasks are dependent
- \gg \mathbf{Bad} event for task j: $B_j \equiv \left\{F_n^j \geq lpha_j
 ight\}$, where $F_n^j = rac{1}{n}\sum_{i=1}^n \mathbf{1}\left\{X_{e,j}^i > X_{b,j}^i
 ight\}$
- >> **Question:** Under what condition(s) is $\mathbb{P}(B_1^c \cap \cdots \cap B_N^c) \geq Q$ for all $n_j \geq m_j$ releases of every task task $T_j, j \in [N]$?

Lovász Local Lemma (LLL)

Let $B_1, B_2, ..., B_N$ be a sequence of events such that each event occurs with probability **at most** f and such that each event is independent of all the other events except for at most d of them.

If
$$efd \leq 1$$
, then $\mathbb{P}(B_1^c \cap \cdots \cap B_N^c) \geq (1-f)^N > 0$

>> **Bad** event for task j: $B_j\equiv \left\{F_n^j\geq lpha_j
ight\}$, where $F_n^j=rac{1}{n}\sum_{i=1}^n \mathbf{1}\left\{X_{e,j}^i>X_{b,j}^i
ight\}$

- >> **Bad** event for task j: $B_j\equiv \left\{F_n^j\geq lpha_j
 ight\}$, where $F_n^j=rac{1}{n}\sum_{i=1}^n \mathbf{1}\left\{X_{e,j}^i>X_{b,j}^i
 ight\}$
- >> **Question:** Under what condition(s) is $\mathbb{P}(B_1^c\cap\cdots\cap B_N^c)\geq Q$ for all $n_j\geq m_j \ orall j\in [N]$?

- >> \mathbf{Bad} event for task j: $B_j\equiv \left\{F_n^j\geq lpha_j
 ight\}$, where $F_n^j=rac{1}{n}\sum_{i=1}^n\mathbf{1}ig\{X_{e,j}^i>X_{b,j}^iig\}$
- > **Question:** Under what condition(s) is $\mathbb{P}(B_1^c \cap \cdots \cap B_N^c) \geq Q$ for all $n_j \geq m_j \ \forall j \in [N]$?
- >> By **LLL** and LD bound, when

$$e^{-n_j I_j} \leq \min igl\{ 1/(de), 1-\sqrt[N]Q igr\} \quad orall j \in [N]$$

- >> \mathbf{Bad} event for task j: $B_j\equiv \left\{F_n^j\geq lpha_j
 ight\}$, where $F_n^j=rac{1}{n}\sum_{i=1}^n\mathbf{1}\left\{X_{e,j}^i>X_{b,j}^i
 ight\}$
- > **Question:** Under what condition(s) is $\mathbb{P}(B_1^c \cap \cdots \cap B_N^c) \geq Q$ for all $n_j \geq m_j \ \forall j \in [N]$?
- >> By **LLL** and LD bound, when

$$e^{-n_j I_j} \leq \min igl\{ 1/(de), 1-\sqrt[N]Q igr\} \quad orall j \in [N]$$

>> When $1-\sqrt[N]{Q}<1/(de),$ if $lpha_j>-\lnig(1-\sqrt[N]{Q}ig)/m_j\equiv d(m_j),$ then it's sufficient that

$$p_j \leq p_j^+(m_j) \equiv rac{d(m_j) + 2lpha_j - \sqrt{d(m_j)^2 + 8lpha_j d(m_j)}}{2}$$

Monitors + Isochronous execution

Monitors + Isochronous execution

» Main task is high quality but unpredictable with execution-time demand X_e

Monitors + Isochronous execution

- Main task is high quality but unpredictable with execution-time demand X_e
- >> **Monitor** is lower-quality and with deterministic WCET c>0 (to be determined)

Monitors + Isochronous execution

- >> **Main task** is high quality but unpredictable with execution-time demand *X*_e
- >> **Monitor** is lower-quality and with deterministic WCET c>0 (to be determined)
- \Rightarrow Here $p=\mathbb{P}(X_e>c)$

Isochronous Execution

Two problems to be solved

Two problems to be solved

>> **Problem1:** Derive **lower** bounds on monitor WCETs c_1,\ldots,c_N so that each task achieves the desired QoS

Two problems to be solved

- >> **Problem1:** Derive **lower** bounds on monitor WCETs c_1, \ldots, c_N so that each task achieves the desired QoS
- >> **Problem 2:** Derive **upper** bounds on monitor WCETs c_1, \ldots, c_N so that all N tasks meet their hard deadlines under isochronous execution while achieving QoS requirements (from **Problem 1**).

>> **Problem1:** Derive **lower** bounds on monitor WCETs c_1,\ldots,c_N so that each task achieves the desired QoS

- >> **Problem1:** Derive **lower** bounds on monitor WCETs c_1, \ldots, c_N so that each task achieves the desired QoS
- >> **Solution:** It is sufficient that $c_j \geq H_{e,j}^-(1-p_j^+)$ for every $j \in [N]$

 $H_{e,j}^-: ext{Quantile function of demand distribution } \mathbb{P}_{X_{e,j}}$

- >> **Problem1:** Derive **lower** bounds on monitor WCETs c_1, \ldots, c_N so that each task achieves the desired QoS
- >> **Solution:** It is sufficient that $c_j \geq H_{e,j}^-(1-p_j^+)$ for every $j \in [N]$

 $H_{e,j}^-: ext{Quantile function of demand distribution } \mathbb{P}_{X_{e,j}}$

>> Is there a feasible isochronous schedule of the tasks with these monitor WCETs?

>> Derive **upper** bounds on monitor WCETs c_1, \ldots, c_N so that all N tasks meet their hard deadlines under isochronous execution while achieving QoS requirements (from **Problem 1**).

- >> Derive **upper** bounds on monitor WCETs c_1, \ldots, c_N so that all N tasks meet their hard deadlines under isochronous execution while achieving QoS requirements (from **Problem 1**).
- >> **Recall:** Given monitor WCETs c_1, \ldots, c_N , a feasible isochronous schedule exists if the optimal solution (x_1^*, \ldots, x_M^*) to the LP below is such that $\sum_{i=1}^M x_i^* \leq 1$:

$$egin{array}{ll} \min_{x\in\mathbb{R}^M} & \sum_{i=1}^M x_i \ \mathrm{subject\ to:} & \sum_{i\in F_j} x_i \geq rac{c_j}{P_j}, & j\in[N] \ & x_i \geq 0, & i\in[M]. \end{array}$$

» One possible solution:

$$egin{array}{ll} \max_{c \in \mathbb{R}^N, \, x \in \mathbb{R}^M} & \sum_{j=1}^N c_j \ & ext{subject to:} & \sum_{i=1}^M x_i \leq 1 \ & \sum_{i \in F_j} x_i \geq rac{c_j}{P_j}, & j \in [N] \ & c_j \geq H_{e,j}^-(1-p_j^+), & j \in [N] \ & x_i \geq 0, & i \in [M] \end{array}$$

>> One possible solution:

$$egin{array}{ll} \max_{c \in \mathbb{R}^N, \ x \in \mathbb{R}^M} & \sum_{j=1}^N c_j \ & ext{subject to:} & \sum_{i=1}^M x_i \leq 1 \ & \sum_{i \in F_j} x_i \geq rac{c_j}{P_j}, & j \in [N] \ & c_j \geq H_{e,j}^-(1-p_j^+), & j \in [N] \ & x_i \geq 0, & i \in [M] \end{array}$$

>> Gives **feasible range** $[H_{e,j}^-(1-p_j^+),c_j^*]$ for task j's monitor WCET if instance is feasible

Do we always need monitors?

>> Task may not need a monitor if its demand is unbounded