

# Dynamic Wireless Network Reconfiguration for Control System Applied to a Nuclear Reactor Case Study

Wenchen Wang, Daniel Mosse, and Dan Cole, Jason Pickel

Computer Science and Mechanical (Nuclear) Engineering University of Pittsburgh



## Pittsburgh and Pitt



Mossé Pitt—CS RTNS 2018



## Pittsburgh and Pitt

- 400,000 → 750,000 inhabitants
- Still affordable (even after Google, Apple, ArgoAI, etc moved in)
- Bikeable!!! (not autonomous, yet)
- 34,750 students, 13,500 faculty and staff
- New School of Computing and Information (SCI): hiring 10+ faculty, lots of students



# Wired vs. Wireless Control System (WCS)





## Wired vs. Wireless Control System (WCS)





# Major Challenges of WCS

- Instability
  - When the physical system is unstable, the plant or the device can be damaged and leads to serious safety issues and financial loss.

- Performance Degradation
  - Induce additional error, network-induced error





# Major Challenges of WCS

- Instability
  - When the physical system is unstable, the plant or the device can be damaged and leads to serious safety issues and financial loss.

#### Performance Degradation

• Induce additional error, network-induced error





## Problem Statement

- Trade-off between delivery ratio and delay
  - Higher delivery ratio -> more redundant nodes -> more delay
  - Need: Optimal network configuration
- Time-correlated link failures [Baccour TOSN'12]
  - Need: Network reconfiguration



- Objective: network-induced error reduction for wireless control system
- Solution
  - Network reconfiguration framework

Mossé Pitt—CS RTNS 2018



# Network Reconfiguration Framework

- Input: network configuration set
  - The network node placement set
- Offline
  - Optimal network configuration table indexed by LSR values.
- Online
  - LSR estimation at run time
  - Centralized network reconfiguration





## **Offline Computation**

- Network imperfection model
  - Define total induced delay to the control system *D* estimation as



•  $n_{loss} \sim dr$ 



# **Offline Computation**

- Network imperfection model
  - Define total induced delay to the control system *D* estimation as



- $n_{loss} \sim dr$
- Estimate  $\Delta$  for each network placement
- Optimal network placement
  - Given LSR, placement with minimum  $\Delta$  estimation
- Optimal network placement table indexed by LSR values





New node placement





New node placement



#### LSR Estimation

- During LSR interval (LSRI), each node will record its own  $n_{should}$  and  $n_{rec}$  over all its receiving links
- Every LSRI, each node sends out its own  $n_{should}$  and  $n_{rec}$ . Parent node will sum up all its children's  $n^i_{should}$  and  $n^i_{rec}$  and its own  $n_{should}$  and  $n_{rec}$
- Remote controller estimates average LSR over all the links.





- Current estimate LSR -> estimate optimal number of nodes
- Centralized Reconfiguration algorithms
  - 1. Direct Jump to Optimal (DO)
  - 2. Multiplicative Increase Conservative Decrease (MICD)
  - 3. Adaptive Control (AC):  $curr_{node} = \alpha \times curr_{node} + (1 \alpha) \times est_{node}$





#### Centralized Reconfiguration algorithms

- 1. Direct Jump to Optimal (DO)
- 2. Multiplicative Increase Conservative Decrease (MICD)





- Considering consecutive losses (CL)
  - Add k more nodes, whenever there are m consecutive losses
  - CL-DO, CL-MICD and CL-AC



## Evaluation

- Case study: one PHX
- Simulator: WCPS [Li ICCPS'15]
- Offline simulation
  - Static RSSI
- Online simulation
  - Dynamic RSSI: dynamic LSR over time
  - LSRI



- Metrics
  - IAE, MAE and RMSE: network-induced error (comparing with wired control system)
  - Network lifetime (days)



## **Offline Table**



• Number of optimal nodes increases, as the LSR decreases

$$D = \left[\frac{D_{network} + n_{loss}\Delta_{ssp}}{\Delta_{csp}}\right]\Delta_{csp}$$



# Network Imperfection Model vs. Offline Simulation Results



- Network imperfection model is accurate
  - Network induced delay is statistically correlated with the power output RMSE (Pearson correlation r = 0.993, p < 0.001)



# Online Results: sensitivity analysis of RSSI values





Online schemes considering consecutive message losses performs better than those not considering consecutive message losses

- 13.5% error reduction
- 3% power saving Mossé Pitt—CS RTNS 2018



## Online Results: sensitivity analysis of LSRI



LSRI value affects the performance of schemes without considering CL

Mossé Pitt—CS RTNS 2018



## Online Results: sensitivity analysis of LSRI



Schemes considering CL are not affected by the LSRI values

Mossé Pitt—CS RTNS 2018



### Sensitivity of $\alpha$ values

#### $curr = \alpha \times curr + (1 - \alpha) \times estimate$

More  $\alpha$ , slower the # nodes is adjusted to the # estimated nodes





## Conclusion

- Our network imperfection model is accurate
  - Pearson Correlation r = 0.993, p < 0.001
- Online reconfiguration schemes perform better than static scheme
  - 20% error reduction
  - 17% power saving
- Online schemes considering consecutive message losses performs better than those not considering consecutive message losses
  - 13.5% error reduction
  - 3% power saving
- Fine tuning is needed:
  - LSRI value affects the WCS performance
  - $\alpha$  values in the AC scheme also affects the WCS performance



## **Questions?**

- 1. Nuclear? With wireless? Really?
- 2. Is it useful for anything else? What's next?
- 3. There were 2 Claires scheduled for Session Chairs...