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Introduction



Introduction

Automotive and industrial automation networks require:

• Time-predictable and bounded execution
• Time-sensitive and deterministic communication
• Mixed criticality network traffic

Time-Sensitive Networking (TSN) is identified as the standard for
network communication in Fog Computing and Industrial Internet of
Things.

• Relies on a global time reference provided by the
IEEE 1588-2008 Precise Time Protocol

Commonly, PTP is implemented in:

• Software
• Compatible PHY transceivers
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Motivation

We investigate and propose a PTP hardware-assist unit:

• MAC-layer based
• Nanosecond synchronization
• WCET analyzable software
• Implemented in FPGA

Why?

+ Not investigated extensively.
+ Industrial platforms will include FPGAs (i.e. Intel’s Fog reference
design)

+ Comparable accuracy to PHY-based
+ Increased price of PTP-capable PHY transceivers compared to
low-range FPGAs

+ FPGA resources can be modified as well as shared with other
hardware units (i.e. hardware accelerators)
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Network Clock Synchronization

• Scheduling operations and
collecting measurements across
the network

• Calculate the time difference
between network devices

• Maintain a minimal offset from
the global time reference

• Network Time Protocol:
– Client-server based polling
protocol

– Application layer protocol over
UDP

– Propagation delays are not
accounted

– Best-case millisecond accuracy

Control system

Time server

High-precision clock 
source (i.e. GPS)

oxygen

Application

Data-acquisition system

Network time example
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IEEE 1588-2008 PTP (1/3)

• Operates on local area networks
• Systems that require nanosecond accuracy
• Based on a master-slave hierarchy

• A grand-master is equipped with a high-precision clock (i.e. GPS)

• Messages are exchanged over UDP or raw Ethernet frames
• Accounts for propagation delay through devices
• Allows for sub-microsecond clock synchronization
• Each Ethernet port of a compatible device implements the
following fundamental blocks:

• IEEE 1588-2008 clock
• Frame/Packet recognizer
• Timestamp capturing
• Clock adjustment
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IEEE 1588-2008 PTP (2/2)

• Exchange of four
messages:
1. SYNC
2. FOLLOW_UP
3. DELAY_REQUEST
4. DELAY_REPLY

• Collecting four
timestamps: t1, t2, t3, t4.

• Offset is calculated as:

offset = t2 − t1 − delay

where:

delay = ( t2 − t1 + t4 − t3)
2

t4: 105.x4 sec

100

101

102

103

104

105

106

107

108

M
75

76

77

78

79

80

81

82

83=

S
t1: 100.x1 sec

t2: 76.x2 sec

t3: 79.x3 sec

108

FOLLOW_UP(100.x1)

SYNC

DELAY
_REQ

UEST

DELAY_REPLY(105.x4)

PTP message flow example

6



Related Work (1/2)

• Timestamping
– Software-based

• No requirement for hardware support
• Software induced delays cause jitter
• Achieves microsecond precision

– MAC-layer
• Monitors the received frame nibbles from the MAC controller
• Can achieve sub-microsecond precision
• Implemented in modern commercial MCUs (i.e. STM32F107xx)
• Has not been explored extensively

– PHY-layer
• As close to the wire as possible timestamping
• Implemented in commercial Texas Instruments PHYTER
• Has been characterized in various projects
• Ensures nanosecond precision
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Related Work (2/2)

• Clock adjustment
– Not specified by the standard
– Can be implemented in different layers
– Three common methods:

1. Directly setting the time
2. Clock rate adjustment by pulse addition and swallowing
3. No active correction but keep an error register instead

• State-of-art
• White-Rabbit application (CERN)
• PTP on a custom network
• Fiber-optic links
• Synchronous Ethernet
• Achived sub-nanosecond precision
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Experimental Platform T-CREST

• Multi-core research platform
• Time-predictable VLIW
Patmos processor

• Argo TDM network-on-chip
• WCET optimized toolchain

– Custom LLVM-based
compiler

– WCET analysis tool platin

• Research use cases:
– Time-predictable
computing

– Network-on-chip
– Real-time systems

T-CREST in an FPGA

Processor
core

Processor
core

Processor
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Memory
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Memory NoC
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External
Memory

On-chip 
memory

T-CREST architecture overview
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Architecture Overview

• Integrated within the
T-CREST platform as a
single IP core

• The unit is composed
of three functional
entities:
1. The two RX/TX
timestamp units

2. The IEEE 1588-2008
Clock

3. The PTP software
stack

Patmos
Processor

OCP Bus

TX PTP Frame TSU

RX PTP Frame TSU

IEEE 
1588 
Clock

FPGA Device

PHY

PHY
Device

T
X

MAC Ethernet 
Controller

R
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Software Stack

PTP Hardware-Assist

Implementation of PTP Hardware-Assist unit
inside a T-CREST node
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Timestamp Unit

• Provides MAC-layer
hardware
timestamping

• Ensures as early as
possible timestamping
(with std. PHY)

• Offloads PTP frame
recognition parsing to
hardware
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IEEE 1588 clock time SFD DST
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ETH
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IP
HEAD

UDP
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Valid PTP

PHY Nibble

Initial

Implementation of the proposed timestamp
unit
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Clock Adjustment

• Composed of four
parts:
1. The clock counter
2. The abrupt update
register

3. The offset correction
register

4. The Rate LUT

• A LUT selects a clock
time-step increment

• Offset is reduced
gradually

• Configurable rate
adjustment through
LUT

PTP Software Stack
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Implementation of the proposed clock
adjustment unit
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Software stack

• The PTP software stack is responsible for the following tasks:
– Initializing Patmos in master or slave PTP port mode.
– Executing the clock synchronization protocol.
– Controlling the PTP hardware assist unit.
– Reporting the clock offset at each synchronization interval.

• Both the PTP_MASTER and the PTP_SLAVE share the same
codebase.

• The PTP_MASTER and the PTP_SLAVE roles are explicitly defined.
• WCET analyzable code:

• Static allocation
• Zero-copy
• Non-blocking
• Bounded loops
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Evaluation



Experimental Setup

Picture of the evaluation setup. Seven segment displays the current time in
seconds in hexadecimal
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Results - Hardware utilization

FPGA resource utilization (Altera Cyclone IV FPGA - 114480 Total Logic
Elements)

Entity Combinational LUTs Registers
PTP Hardware-Assist 1485 1182
MIITimestampUnit 454 402
DeserializePHYbyte 13 11
DeserializePHYBuffer 65 64
RTC 431 234
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Results - WCET analysis

WCET Analysis of PTP Software Stack

Function WCET
Clock Cycles Time (at 80 MHz)

ptpv2_issue_msg() 2560141 32ms
check_ptpv2_frame() 684 8.55 us
ptpv2_handle_msg() 3893 48.6 us

16



Results - Timestamping method comparison

Software-based Timestamping Clock Synchronization (std.dev=95.3ns)
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Hardware-based Timestamping Clock Synchronization (std.dev=49.8ns)

-500 -400 -300 -200 -100 0 100 200 300
Clock Offset (ns)

0

500

1000

1500

2000

S
a
m

p
le

s 
C

o
u

n
t

PTP-Slave clock offset comparison between software-based (top) and
hardware-based (bottom) timestamping using only abrupt updates.
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Results - Clock adjustment method comparison

Clock Synchronization Using Abrupt Updates (mean=-153.9ns)
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Clock Synchronization Using Rate-Control (mean = -17.3ns)
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PTP-Slave clock offset comparison between abrupt updates (top) and
rate-control (bottom) adjustment.
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Future Work

• Extend the experimental setup to a larger TSN network of
T-CREST nodes.

• Increase the resolution of the clock and evaluate the results
using different SYNC message rates.

• Investigate a complete in-hardware PTP synchronization
solution aiming to:

• Automated periodic PTP frame transmission
• Automated clock offset calculation and correction
• Eliminate CPU processing time for clock synchronization
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Conclusion

• PTP hardware-assist implementation
• PTP frame recognition timestamp unit
• Clock rate adjustment
• WCET analyzable software
• Peer evaluated in-hardware

• Achieves nanosecond clock synchronization
• Comparable jitter of 50 ns as the commercial TI PHYTER
• Improved worst-case offset of 134 ns compared to the STM32F107xx
micro-controller implementation of 260 ns

• Uses minimal FPGA resources
– Only 1.7% of the total available resources of a medium-range
FPGA device

– And 11% of the total size of the medium-sized Patmos processor

• The IP core is implemented but-not-limited-to FPGA
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