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Why Elastic Parallel Real-Time Tasks?

Need to “re-size” either workloads or periods adaptively,

e.g., in a 1000 degree-of-freedom simulation with real-time guarantees at periods
down to millisecond time-scales, integrated safely with control, sensing, actuation
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Limitations of the Current State of the Art

m Scheduling theory and concurrency platforms for
parallel real-time tasks are mainly static
» Assume reqgular release intervals and workloads
» Limited adaptation to run-time conditions (mixed criticality)

m Elastic scheduling techniques don’t address tasks with
both internal parallelism and variable workloads
» Uniprocessor scheduling of sequential variable-period tasks
» Elastic scheduling of parallel tasks with variable periods (only)
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Elastic Scheduling of Sequential Real-Time Tasks

m Buttazzo et al. introduced the elastic scheduling model
» Increase tasks’ periods to compresses utilizations (RTSS '98)
» Analogous to elastic compression of physical springs
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» Model was also extended to consider blocking terms for critical
sections accessed via the Stack Resource Policy (IEEE ToC '02)
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Elastic Scheduling as Constrained Optimization

m Chantem et al. defined this as an optimization problem

» Minimize a weighted sum of squares of the differences between
the chosen utilization for each task and its maximum utilization

» Subject to utilizations being between minimum and maximum
values and the sum not exceeding the available utilization
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Key Features of Parallel Real-Time DAG Tasks

m DAG of subtasks and their dependences
» Predecessor nodes finish before successors start

= Work (computation time) C,
» Sequential execution time on 1 core
= Span (critical path length) L;
» Least parallel execution time on 00 cores

= Implicit deadline D, equals period T;
» Task must finish execution before next release

L=1+4+15+1141=32
C=L+3+2+4+1+1+1+14+2=47
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Temporally Elastic Parallel Real-Time Tasks
m Federated Scheduling
» Utilization of task t; is the ratio of its work C; to its period T;

» Number of (dedicated) cores t; needs also considers its span L,
» Schedulable if can dedicate sufficient cores for all tasks’ needs

m Extending elastic scheduling to parallel real-time tasks
» Semantics of Buttazzo et al. model can be used directly

» However, Chantem et al. model offers a more efficient approach
based on Federated Scheduling of parallel real-time tasks

» Paper submitted to a journal (currently under review)

e J. Orr, C. Gill, K. Agrawal, J. Li, S. Baruah, "Semantics Preserving
Elastic Scheduling for Parallel Real-Time Systems”
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Supporting Temporal or Computational Elasticity

m Contributions of this paper

» Generalizations of algorithm and task model from LITES paper
to support either computational or temporal elasticity

» Empirical evaluations to gauge overheads, elastic equivalence
m Temporally elastic tasks
» Minimum inter-arrival time (period) can be varied elastically
» Task’s span and work are fixed
m Computationally elastic tasks

» Sum of subtask execution times (work) can be varied elastically
» Task’s span and period are fixed
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Elastic Compression of Parallel Real-Time Tasks
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m Updates optimization from Chantem et al. (RTSS 2006)
» Uses utilization definition for parallel real-time tasks
» Allows either period or work to be compressed elastically
» Checks schedulability under Federated Scheduling on m cores
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Concurrency Platform Design and Implementation

Scheduler performs reschedule,
---------- 0 updates shared memory
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Adaptation Mechanism Overheads are Acceptable

m Task notification via POSIX RT signals
» Ranged from 11.23 psec to 110.03 pysec, often around 18 psec

m Thread priority change (and possible core migration)
» Ranged from 2.67 usec to 76.77 psec, often around 30 psec
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Evaluation Experiments Demonstrate Equivalence
m Experiments compared varying a task’s D, vs. its C

m Comparable tasks compressed to the same utilization
» Temporally vs. computationally elastic tasks reached same point
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Conclusions and Future Work

m Contributions of this research
» Scheduling of computationally elastic parallel real-time tasks

» Equivalence of utilization compression when tasks are
computationally vs. temporally elastic

» Efficient implementation using OpenMP atop Linux

m Future research directions

» Allowing a task’s span and work and period to change at once
e Schedulability analysis, optimization problem for elastic compression
e Thread prioritization, core bindings, synchronization, notification

» Elastic compression of tasks with only discrete utilization values
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Backup Slide: Federated Scheduling

m In general a parallel task requires g‘i = A, + & (A isinteger, 0 < g < 1)

CPUs to guarantee completion

C-L

1

D-L

m Federated scheduling allocates

CPU
6

J. Li et al., "Analysis of Federated and Global Scheduling for Parallel Real-Time Tasks," 2014 26th Euromicro Conference on Real-Time Systems, Madrid, 2014, pp. 85-96.
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Backup Slide: Semi-Federated Scheduling

m In general a parallel task requires %= A + g (A isinteger, 0 < g < 1)
CPUs to guarantee completion

12 7

C-L
= Semi-federated scheduling first allocates|D -L |= A; CPUs
» Remaining g, scheduled as sequential tasks on remaining CPUs (e.g. via partitioned EDF)

CPU
6

Jiang, Xu & Guan, Nan & Long, Xiang & Yi, Wang. (2017). Semi-Federated Scheduling of Parallel Real-Time Tasks on Multiprocessors. RTSS 2017.



