
*James Orr, *Chris Gill, *Kunal Agrawal,
*Sanjoy Baruah, +Christian Cianfarani,
=Phyllis Ang, and +Christopher Wong

*Washington University in St. Louis
+Brown University
=University of Texas at Austin

Elasticity of Workloads and Periods of
Parallel Real-Time Tasks

26th International Conference on Real-Time Networks and Systems
(RTNS ‘18) Poitiers/Futuroscope, France, October 10-12, 2018

Why Elastic Parallel Real-Time Tasks?

Empirical Evaluation Theoretical Model

Parallel Real-Time
Numerical Simulation

è ✖

Need to “re-size” either workloads or periods adaptively,
e.g., in a 1000 degree-of-freedom simulation with real-time guarantees at periods
down to millisecond time-scales, integrated safely with control, sensing, actuation

Real-Time Hybrid Simulation

Physical
Specimen

n Scheduling theory and concurrency platforms for
parallel real-time tasks are mainly static
» Assume regular release intervals and workloads
» Limited adaptation to run-time conditions (mixed criticality)

n Elastic scheduling techniques don’t address tasks with
both internal parallelism and variable workloads
» Uniprocessor scheduling of sequential variable-period tasks
» Elastic scheduling of parallel tasks with variable periods (only)

Limitations of the Current State of the Art

n Buttazzo et al. introduced the elastic scheduling model
» Increase tasks’ periods to compresses utilizations (RTSS ‘98)
» Analogous to elastic compression of physical springs

» F

» Model was also extended to consider blocking terms for critical

sections accessed via the Stack Resource Policy (IEEE ToC ‘02)

Elastic Scheduling of Sequential Real-Time Tasks

E2

F

E1

Elastic Scheduling as Constrained Optimization
n Chantem et al. defined this as an optimization problem

» Minimize a weighted sum of squares of the differences between
the chosen utilization for each task and its maximum utilization

» Subject to utilizations being between minimum and maximum
values and the sum not exceeding the available utilization

n DAG of subtasks and their dependences
» Predecessor nodes finish before successors start

n Work (computation time) Ci
» Sequential execution time on 1 core

n Span (critical path length) Li
» Least parallel execution time on cores

n Implicit deadline Di equals period Ti
» Task must finish execution before next release

Key Features of Parallel Real-Time DAG Tasks

Li = 1 + 4 + 15 + 11 + 1 = 32
Ci = Li + 3 + 2 + 4 + 1 + 1 + 1 + 1 + 2 = 47

4

1

15

11

1
1

1

1

1

2

3

2

4 ∞

n Federated Scheduling
» Utilization of task τi is the ratio of its work Ci to its period Ti

» Number of (dedicated) cores τi needs also considers its span Li
» Schedulable if can dedicate sufficient cores for all tasks’ needs

n Extending elastic scheduling to parallel real-time tasks
» Semantics of Buttazzo et al. model can be used directly
» However, Chantem et al. model offers a more efficient approach

based on Federated Scheduling of parallel real-time tasks
» Paper submitted to a journal (currently under review)

•  J. Orr, C. Gill, K. Agrawal, J. Li, S. Baruah, “Semantics Preserving
Elastic Scheduling for Parallel Real-Time Systems”

Temporally Elastic Parallel Real-Time Tasks

n Contributions of this paper
» Generalizations of algorithm and task model from LITES paper

to support either computational or temporal elasticity
» Empirical evaluations to gauge overheads, elastic equivalence

n Temporally elastic tasks
» Minimum inter-arrival time (period) can be varied elastically
» Task’s span and work are fixed

n Computationally elastic tasks
» Sum of subtask execution times (work) can be varied elastically
» Task’s span and period are fixed

Supporting Temporal or Computational Elasticity

Elastic Compression of Parallel Real-Time Tasks

n Updates optimization from Chantem et al. (RTSS 2006)
» Uses utilization definition for parallel real-time tasks
» Allows either period or work to be compressed elastically
» Checks schedulability under Federated Scheduling on m cores

Concurrency Platform Design and Implementation

CPU
0

CPU
3

CPU
4

CPU
5

CPU
6

CPU
7

CPU
8

CPU
9

CPU
10

Shared Memory

Scheduler Task 1 Task 2 Task 3

1 Task notifies
scheduler of

 mode change

2 Scheduler performs reschedule,
updates shared memory

3 Scheduler notifies
tasks of completed

reschedule

4 Tasks read
shared memory,

update which
processors they use

CPU
1

CPU
2

n Task notification via POSIX RT signals
» Ranged from 11.23 µsec to 110.03 µsec, often around 18 µsec

n Thread priority change (and possible core migration)
» Ranged from 2.67 µsec to 76.77 µsec, often around 30 µsec

Adaptation Mechanism Overheads are Acceptable

n Experiments compared varying a task’s Di vs. its Ci
n Comparable tasks compressed to the same utilization

» Temporally vs. computationally elastic tasks reached same point

Evaluation Experiments Demonstrate Equivalence

n Contributions of this research
» Scheduling of computationally elastic parallel real-time tasks
» Equivalence of utilization compression when tasks are

computationally vs. temporally elastic
» Efficient implementation using OpenMP atop Linux

n Future research directions
» Allowing a task’s span and work and period to change at once

•  Schedulability analysis, optimization problem for elastic compression
•  Thread prioritization, core bindings, synchronization, notification

» Elastic compression of tasks with only discrete utilization values

Conclusions and Future Work

Thanks!

Christian Cianfarani
Christopher Wong

James Orr
Chris Gill
Kunal Agrawal
Sanjoy Baruah

Work supported in part by NSF grant CCF-1337218 (XPS: FP)

Phyllis Ang

Backup Slide: Federated Scheduling

Task 1 Task 2 Task 3

CPU
1

Task 4

CPU
2

CPU
3

CPU
4

CPU
6

CPU
8

CPU
9

CPU
10

CPU
5

CPU
7

n  In general a parallel task requires = Ai + εi (Ai is integer, 0 ≤ εi < 1)
CPUs to guarantee completion

n  Federated scheduling allocates CPUs

Ci − Li
Di − Li

Ci − Li
Di − Li

⎡

⎢
⎢

⎤

⎥
⎥= iA iε = 0

1+
iA iε > 0

⎧

⎨
⎪

⎩⎪

J. Li et al., "Analysis of Federated and Global Scheduling for Parallel Real-Time Tasks," 2014 26th Euromicro Conference on Real-Time Systems, Madrid, 2014, pp. 85-96.

15

Backup Slide: Semi-Federated Scheduling

Task 1 Task 2 Task 3

CPU
1

Task 4

CPU
2

CPU
4

CPU
6

CPU
7

CPU
8

CPU
9

CPU
10

CPU
3

CPU
5

CPU
7

n  In general a parallel task requires = Ai + εi (Ai is integer, 0 ≤ εi < 1)
CPUs to guarantee completion

n  Semi-federated scheduling first allocates = Ai CPUs
»  Remaining εi scheduled as sequential tasks on remaining CPUs (e.g. via partitioned EDF)

Ci − Li
Di − Li

Ci − Li
Di − Li

⎢

⎣
⎢

⎥

⎦
⎥

Jiang, Xu & Guan, Nan & Long, Xiang & Yi, Wang. (2017). Semi-Federated Scheduling of Parallel Real-Time Tasks on Multiprocessors. RTSS 2017.

16

