&= Washington University in St.Louis

Engineering

Elasticity of Workloads and Periods of
Parallel Real-Time Tasks

26t International Conference on Real-Time Networks and Systems
(RTNS *18) Poitiers/Futuroscope, France, October 10-12, 2018

*James Orr, *Chris Gill, *Kunal Agrawal,
*Sanjoy Baruah, *Christian Cianfarani,
=Phyllis Ang, and *Christopher Wong

*Washington University in St. Louis
TBrown University
=University of Texas at Austin

&= Washington University in St.Louis

Engineering

Why Elastic Parallel Real-Time Tasks?

Need to “re-size” either workloads or periods adaptively,

e.g., in a 1000 degree-of-freedom simulation with real-time guarantees at periods
down to millisecond time-scales, integrated safely with control, sensing, actuation

Empirical Evaluatlon Theoretical Model Real-Time Hybrid Simulation

Parallel Real-Time
: Numerical Simulation

‘ Physical

Sp\eqjl_vmen

&= Washington University in St.Louis

Engineering

Limitations of the Current State of the Art

m Scheduling theory and concurrency platforms for
parallel real-time tasks are mainly static
» Assume reqgular release intervals and workloads
» Limited adaptation to run-time conditions (mixed criticality)

m Elastic scheduling techniques don’t address tasks with
both internal parallelism and variable workloads
» Uniprocessor scheduling of sequential variable-period tasks
» Elastic scheduling of parallel tasks with variable periods (only)

&= Washington University in St.Louis

Engineering

Elastic Scheduling of Sequential Real-Time Tasks

m Buttazzo et al. introduced the elastic scheduling model
» Increase tasks’ periods to compresses utilizations (RTSS '98)
» Analogous to elastic compression of physical springs

E; E,

AT 70000

» Model was also extended to consider blocking terms for critical
sections accessed via the Stack Resource Policy (IEEE ToC '02)

N

i

&= Washington University in St.Louis

Engineering

Elastic Scheduling as Constrained Optimization

m Chantem et al. defined this as an optimization problem

» Minimize a weighted sum of squares of the differences between
the chosen utilization for each task and its maximum utilization

» Subject to utilizations being between minimum and maximum
values and the sum not exceeding the available utilization

2
minimize ZE U(max) Ui)

n
such that Vv; (U(mm) <U; < U(max) AUy > Z
=1

&= Washington University in St.Louis

Engineering

Key Features of Parallel Real-Time DAG Tasks

m DAG of subtasks and their dependences
» Predecessor nodes finish before successors start

= Work (computation time) C,
» Sequential execution time on 1 core
= Span (critical path length) L;
» Least parallel execution time on 00 cores

= Implicit deadline D, equals period T;
» Task must finish execution before next release

L=1+4+15+1141=32
C=L+3+2+4+1+1+1+14+2=47

&= Washington University in St.Louis

Engineering

Temporally Elastic Parallel Real-Time Tasks
m Federated Scheduling
» Utilization of task t; is the ratio of its work C; to its period T;

» Number of (dedicated) cores t; needs also considers its span L,
» Schedulable if can dedicate sufficient cores for all tasks’ needs

m Extending elastic scheduling to parallel real-time tasks
» Semantics of Buttazzo et al. model can be used directly

» However, Chantem et al. model offers a more efficient approach
based on Federated Scheduling of parallel real-time tasks

» Paper submitted to a journal (currently under review)

e J. Orr, C. Gill, K. Agrawal, J. Li, S. Baruah, "Semantics Preserving
Elastic Scheduling for Parallel Real-Time Systems”

&= Washington University in St.Louis

Engineering

Supporting Temporal or Computational Elasticity

m Contributions of this paper

» Generalizations of algorithm and task model from LITES paper
to support either computational or temporal elasticity

» Empirical evaluations to gauge overheads, elastic equivalence
m Temporally elastic tasks
» Minimum inter-arrival time (period) can be varied elastically
» Task’s span and work are fixed
m Computationally elastic tasks

» Sum of subtask execution times (work) can be varied elastically
» Task’s span and period are fixed

&= Washington University in St.Louis

Engineering

Elastic Compression of Parallel Real-Time Tasks

(max) _ 17\
minimize Z E U, Ul)

Ci — Ll]
T, — L

n
such that v; (Ul.(mm) <U; < Ui(max)) Am= Z [
i=1

m Updates optimization from Chantem et al. (RTSS 2006)
» Uses utilization definition for parallel real-time tasks
» Allows either period or work to be compressed elastically
» Checks schedulability under Federated Scheduling on m cores

&= Washington University in St.Louis

Engineering

Concurrency Platform Design and Implementation

Scheduler performs reschedule,
---------- 0 updates shared memory

1
1 Y
' O,
| Tasks read
1
! x A A update which
i i i E processors they use
i 1
i CPU CPU CPU CPU CPU CPU CPU CPU || CPU || CPU CPU
L 0 1 2 3 4 5 6 7 8 9 10
Scheduler Task 1 Task 2 Task 3
A T A A

Scheduler notifies
tasks of completed
reschedule

scheduler of
mode change

T
1
1
i Task notifies
E
|
1

!
-

r

&= Washington University in St.Louis

Engineering

Adaptation Mechanism Overheads are Acceptable

m Task notification via POSIX RT signals
» Ranged from 11.23 psec to 110.03 pysec, often around 18 psec

m Thread priority change (and possible core migration)
» Ranged from 2.67 usec to 76.77 psec, often around 30 psec

Signal Handling Times (10,000 Iterations) Transition Times (10,000 Iterations)
T T T T T T T

03
025 025
E ozt : 2 o0zt
= =
3 3
(_) Q
£ [
0151 1 & oash
01 1 01
005} 5 005}
0 v L 0 v
0 20 40 60 80 100 120 0 20 40 60 80
Latency (usec) Latency (usec)

&= Washington University in St.Louis

Engineering

Evaluation Experiments Demonstrate Equivalence
m Experiments compared varying a task’s D, vs. its C

m Comparable tasks compressed to the same utilization
» Temporally vs. computationally elastic tasks reached same point

1000

@ Common Tasks 1000 @® Common Tasks
< o - A Adaptive Workload @ ° * Adaptive Task
Task
750 Adaptive Period 750
Task
= 500 - 500
L S
8 4
o o ® o
250 250
0
2500 3000 3500 4000 4500 2500 3000 3500 4000 4500

Workload (ms) Workload (ms)

&= Washington University in St.Louis

Engineering

Conclusions and Future Work

m Contributions of this research
» Scheduling of computationally elastic parallel real-time tasks

» Equivalence of utilization compression when tasks are
computationally vs. temporally elastic

» Efficient implementation using OpenMP atop Linux

m Future research directions

» Allowing a task’s span and work and period to change at once
e Schedulability analysis, optimization problem for elastic compression
e Thread prioritization, core bindings, synchronization, notification

» Elastic compression of tasks with only discrete utilization values

& Washington University in St.Louis

Engineering

Thanks! &

frapsd . oo BROWN
Washmgton @9 UNIVERSITY
UI]iVQI’SitymStLOUiS Christian Cianfarani

James Orr Christopher Wong

Ez:mi:liigrawal TEXA_S

Sanjoy Baruah

The University of Texas at Austin

Phyllis Ang

'(-
e Work supported in part by NSF grant CCF-1337218 (XPS: FP)

&= Washington University in St.Louis

Engineering

Backup Slide: Federated Scheduling

m In general a parallel task requires g‘i = A, + & (A isinteger, 0 < g < 1)

CPUs to guarantee completion

C-L

1

D-L

m Federated scheduling allocates

CPU
6

J. Li et al., "Analysis of Federated and Global Scheduling for Parallel Real-Time Tasks," 2014 26th Euromicro Conference on Real-Time Systems, Madrid, 2014, pp. 85-96.

&= Washington University in St.Louis

Engineering

Backup Slide: Semi-Federated Scheduling

m In general a parallel task requires %= A + g (A isinteger, 0 < g < 1)
CPUs to guarantee completion

12 7

C-L
= Semi-federated scheduling first allocates|D -L |= A; CPUs
» Remaining g, scheduled as sequential tasks on remaining CPUs (e.g. via partitioned EDF)

CPU
6

Jiang, Xu & Guan, Nan & Long, Xiang & Yi, Wang. (2017). Semi-Federated Scheduling of Parallel Real-Time Tasks on Multiprocessors. RTSS 2017.

