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Why Elastic Parallel Real-Time Tasks? 

Empirical Evaluation Theoretical Model 

Parallel Real-Time 
Numerical Simulation 

è ✖ 

Need to “re-size” either workloads or periods adaptively,  
e.g., in a 1000 degree-of-freedom simulation with real-time guarantees at periods 
down to millisecond time-scales, integrated safely with control, sensing, actuation 

Real-Time Hybrid Simulation 

Physical 
Specimen 



n Scheduling theory and concurrency platforms for 
parallel real-time tasks are mainly static 
» Assume regular release intervals and workloads 
» Limited adaptation to run-time conditions (mixed criticality) 

n Elastic scheduling techniques don’t address tasks with 
both internal parallelism and variable workloads 
» Uniprocessor scheduling of sequential variable-period tasks 
» Elastic scheduling of parallel tasks with variable periods (only) 

Limitations of the Current State of the Art 



n Buttazzo et al. introduced the elastic scheduling model 
» Increase tasks’ periods to compresses utilizations (RTSS ‘98) 
» Analogous to elastic compression of physical springs 

» F 

 
» Model was also extended to consider blocking terms for critical 

sections accessed via the Stack Resource Policy (IEEE ToC ‘02)  

Elastic Scheduling of Sequential Real-Time Tasks 
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Elastic Scheduling as Constrained Optimization 
n Chantem et al. defined this as an optimization problem 

» Minimize a weighted sum of squares of the differences between 
the chosen utilization for each task and its maximum utilization 

» Subject to utilizations being between minimum and maximum 
values and the sum not exceeding the available utilization 



n DAG of subtasks and their dependences 
» Predecessor nodes finish before successors start 

n Work (computation time) Ci
» Sequential execution time on 1 core 

n Span (critical path length) Li
» Least parallel execution time on     cores 

n Implicit deadline Di equals period Ti
» Task must finish execution before next release 

Key Features of Parallel Real-Time DAG Tasks 

Li = 1 + 4 + 15 + 11 + 1 = 32
Ci = Li + 3 + 2 + 4 + 1 + 1 + 1 + 1 + 2 = 47 
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n Federated Scheduling 
» Utilization of task τi is the ratio of its work Ci  to its period Ti  

» Number of (dedicated) cores τi needs also considers its span Li 
» Schedulable if can dedicate sufficient cores for all tasks’ needs 

n Extending elastic scheduling to parallel real-time tasks 
» Semantics of Buttazzo et al. model can be used directly 
» However, Chantem et al. model offers a more efficient approach 

based on  Federated Scheduling of parallel real-time tasks 
» Paper submitted to a journal (currently under review) 

•  J. Orr, C. Gill, K. Agrawal, J. Li, S. Baruah, “Semantics Preserving 
Elastic Scheduling for Parallel Real-Time Systems” 

Temporally Elastic Parallel Real-Time Tasks 



n Contributions of this paper 
» Generalizations of algorithm and task model from LITES paper 

to support either computational or temporal elasticity 
» Empirical evaluations to gauge overheads, elastic equivalence 

n Temporally elastic tasks 
» Minimum inter-arrival time (period) can be varied elastically 
» Task’s span and work are fixed  

n Computationally elastic tasks 
» Sum of subtask execution times (work) can be varied elastically 
» Task’s span and period are fixed  

Supporting Temporal or Computational Elasticity 



Elastic Compression of Parallel Real-Time Tasks 

n Updates optimization from Chantem et al. (RTSS 2006)  
» Uses utilization definition for parallel real-time tasks 
» Allows either period or work to be compressed elastically 
» Checks schedulability under Federated Scheduling on m cores 



Concurrency Platform Design and Implementation 
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n Task notification via POSIX RT signals   
» Ranged from 11.23 µsec to 110.03 µsec, often around 18 µsec 

n Thread priority change (and possible core migration) 
» Ranged from 2.67 µsec to 76.77 µsec, often around 30 µsec  

Adaptation Mechanism Overheads are Acceptable 



n Experiments compared varying a task’s Di vs. its Ci
n Comparable tasks compressed to the same utilization 

» Temporally vs. computationally elastic tasks reached same point 

Evaluation Experiments Demonstrate Equivalence 



n Contributions of this research 
» Scheduling of computationally elastic parallel real-time tasks 
» Equivalence of utilization compression when tasks are 

computationally vs. temporally elastic  
» Efficient implementation using OpenMP atop Linux 

n Future research directions 
» Allowing a task’s span and work and period to change at once 

•  Schedulability analysis, optimization problem for elastic compression 
•  Thread prioritization, core bindings, synchronization, notification  

» Elastic compression of tasks with only discrete utilization values 

Conclusions and Future Work 
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Backup Slide: Federated Scheduling 
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n  In general a parallel task requires         = Ai + εi (Ai is integer, 0 ≤ εi < 1) 
CPUs to guarantee completion 

n  Federated scheduling allocates            CPUs 

Ci − Li
Di − Li
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J. Li et al., "Analysis of Federated and Global Scheduling for Parallel Real-Time Tasks," 2014 26th Euromicro Conference on Real-Time Systems, Madrid, 2014, pp. 85-96. 
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Backup Slide: Semi-Federated Scheduling 
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n  In general a parallel task requires         = Ai + εi (Ai is integer, 0 ≤ εi < 1) 
CPUs to guarantee completion 

n  Semi-federated scheduling first allocates          = Ai CPUs 
»  Remaining εi scheduled as sequential tasks on remaining CPUs (e.g. via partitioned EDF) 
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Jiang, Xu & Guan, Nan & Long, Xiang & Yi, Wang. (2017). Semi-Federated Scheduling of Parallel Real-Time Tasks on Multiprocessors. RTSS 2017.  
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