
An industrial case study of TACO

Icons courtesy of https://icons8.com/

Benjamin Lesage, Stephen Law, Iain Bate

Context

TACO – RTNS 2018

• Rolls-Royce VISIUMCORE platform

 Integrated instruction tracing and timing

 Instructions’ execution is time-invariant

 Limited time-relevant state

• WCET Timing analysis
- Builds WCET from low-level block timings
- Requires full coverage of executed code

• Full Authority Digital Engine Controller
- Designed to DO-178C DAL A guidelines
- Coverage through low-level tests

• Automatic test case generation technique [1]
- Provide better coverage and timing data

2

[1] Stephen Law and Iain Bate, Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis, ECRTS, 2016

Context

TACO – RTNS 2018

• Rolls-Royce VISIUMCORE platform

 Integrated instruction tracing and timing

 Instructions’ execution is time-invariant

 Limited time-relevant state

• WCET Timing analysis
- Builds WCET from low-level block timings
- Requires full coverage of executed code

• Full Authority Digital Engine Controller
- Designed to DO-178C DAL A guidelines
- Coverage through low-level tests

• Automatic test case generation technique [1]
- Provide better coverage and timing data

3

[1] Stephen Law and Iain Bate, Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis, ECRTS, 2016

Formal testing late in life cycle

On-Target testing is expensive

Coverage Technique [1] - Example

TACO – RTNS 2018

4

function F (B: Boolean, C: Byte)

A > 0.75

B

•

[1] Stephen Law and Iain Bate, Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis, ECRTS, 2016

Coverage Technique [1] - Example

TACO – RTNS 2018

5

function F (B: Boolean, C: Byte)

A > 0.75

B

{A: 0.5, B: True, C: 7}

Generate a test vector

[1] Stephen Law and Iain Bate, Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis, ECRTS, 2016

Coverage Technique [1] - Example

TACO – RTNS 2018

6

function F (B: Boolean, C: Byte)

A > 0.75

B

{A: 0.5, B: True, C: 7}

Execute the function

[1] Stephen Law and Iain Bate, Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis, ECRTS, 2016

Coverage Technique [1] - Example

TACO – RTNS 2018

7

function F (B: Boolean, C: Byte)

A > 0.75

B

{A: 0.5, B: True, C: 7}

Collect coverage metrics

[1] Stephen Law and Iain Bate, Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis, ECRTS, 2016

Coverage Technique [1] - Example

TACO – RTNS 2018

8

function F (B: Boolean, C: Byte)

A > 0.75

B

{A: 0.5, B: True, C: 7}

{A: 0.95, B: True, C: 7}

Mutate the test vector

[1] Stephen Law and Iain Bate, Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis, ECRTS, 2016

Coverage Technique [1] - Example

TACO – RTNS 2018

9

function F (B: Boolean, C: Byte)

A > 0.75

B

{A: 0.5, B: True, C: 7}

{A: 0.95, B: True, C: 7}

[1] Stephen Law and Iain Bate, Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis, ECRTS, 2016

Coverage Technique [1] - Example

TACO – RTNS 2018

10

function F (B: Boolean, C: Byte)

A > 0.75

B

{A: 0.5, B: True, C: 7}

{A: 0.95, B: True, C: 7}

{A: 0.95, B: True, C: 6}

Reject poor solutions

[1] Stephen Law and Iain Bate, Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis, ECRTS, 2016

Coverage Technique [1] - Example

TACO – RTNS 2018

11

function F (B: Boolean, C: Byte)

A > 0.75

B

{A: 0.5, B: True, C: 7}

{A: 0.95, B: True, C: 7}

{A: 0.95, B: True, C: 6}

{A: 0.95, B: True, C: 7}

[1] Stephen Law and Iain Bate, Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis, ECRTS, 2016

Coverage Technique [1] - Example

TACO – RTNS 2018

12

function F (B: Boolean, C: Byte)

A > 0.75

B

{A: 0.5, B: True, C: 7}

{A: 0.95, B: True, C: 7}

{A: 0.95, B: True, C: 6}

{A: 0.95, B: True, C: 7}

{A: 0.95, B: False, C: 7}

[1] Stephen Law and Iain Bate, Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis, ECRTS, 2016

Coverage Technique [1] - Example

TACO – RTNS 2018

13

function F (B: Boolean, C: Byte)

A > 0.75

B

 Search-based timing analysis tool

 Support measurement-based WCET analysis

 Drive the execution of a tested function

 Generate a sequence of test vectors
 Solutions evaluated on coverage metrics

 Executed blocks of code, loops branches

 Different heuristics target different objectives

Requires knowledge about functions’ inputs, types and value ranges

TACO - Overview

TACO – RTNS 2018

14

Driver

Executable

Testport

Instrumented codeSource code

System Model
Profit

The system model captures all software interfaces and requirementsThe system model captures all software interfaces and requirements

TACO - Overview

TACO – RTNS 2018

15

Driver

Executable

Testport

Instrumented codeSource code

System Model
Profit

The source code is generated from the modelThe source code is generated from the model

TACO - Overview

TACO – RTNS 2018

16

Driver

Executable

Testport

Instrumented codeSource code

System Model
Profit

Instrumentation inserts primitives to capture timing and coverageInstrumentation inserts primitives to capture timing and coverage

TACO - Overview

TACO – RTNS 2018

17

Driver

Executable

Testport

Instrumented codeSource code

System Model
Profit

The Driver [1] produces test vectors to be executed The Driver [1] produces test vectors to be executed

TACO - Overview

TACO – RTNS 2018

18

Driver

Executable

Testport

Instrumented codeSource code

System Model
Profit

A testport is also generated from the system model A testport is also generated from the system model

TACO – Testport

TACO – RTNS 2018

19

Testport

DriverSource code

• The testport is the interface between the test function and driver
- Initialises inputs, runs and measures the function
- Provides feedback to the driver

• A common interface means item and driver can be swapped

TACO – Testport

TACO – RTNS 2018

20

Testport

DriverSource code

• The testport is the interface between the test function and driver
- Initialises inputs, runs and measures the function
- Provides feedback to the driver

• A common interface means item and driver can be swapped

TACO - Overview

TACO – RTNS 2018

21

Driver

Executable

Testport

Instrumented codeSource code

System Model
Profit

A testport is also generated from the system model A testport is also generated from the system model

TACO - Overview

TACO – RTNS 2018

22

Driver

Executable

Testport

Instrumented codeSource code

System Model
Profit

Testport, driver and tested function are combined Testport, driver and tested function are combined

TACO - Overview

TACO – RTNS 2018

23

Driver

Executable

Testport

Instrumented codeSource code

System Model
Profit

Generated traces can be processed for analysis Generated traces can be processed for analysis

TACO - Overview

TACO – RTNS 2018

24

Driver

Executable

Testport

Instrumented codeSource code

System Model
Profit

Reducing on-target testing

TACO – RTNS 2018

25

Driver

Executable

Testport

Instrumented codeSource code

System Model

Reducing on-target testing

TACO – RTNS 2018

26

• The coverage technique [1] relies only on coverage information
- Coverage is measured at the source level
- Coverage is platform-independent

• Host-based testing can reduce the requirements on target
- Collect coverage and inputs on host
- Replay selection of tests on target

Host

Reducing on-target testing

TACO – RTNS 2018

27

• The coverage technique [1] relies only on coverage information
- Coverage is measured at the source level
- Coverage is platform-independent

• Host-based testing can reduce the requirements on target
- Collect coverage and inputs on host
- Replay selection of tests on target

Host

Reducing on-target testing

TACO – RTNS 2018

28

• The coverage technique [1] relies only on coverage information
- Coverage is measured at the source level
- Coverage is platform-independent

• Host-based testing can reduce the requirements on target
- Collect coverage and inputs on host
- Replay selection of tests on target

VISIUMCORE

Evaluation - Objectives

TACO – RTNS 2018

• TACO scalability
- Can TACO be automatically applied to a full control system?

• Driver portability:
- Can [1] be applied on different platforms?

• Driver scalability:
- Can [1] be applied to a full control system?
- What coverage can be achieved?

• Reducing on-target testing:
- Can TACO reduce requirements on target?

29

Evaluation - Configuration

TACO – RTNS 2018

• Unmodified control system
- Designed according to DO-178C as DAL-A
- 1800 items for analysis, including 250+ scheduled tasks

• Two evaluation platforms:
- Target: VISIUMCORE
- Host: i686

• Two heuristics for driver:
- Ran: Random search through input space
- BCHLr: Search focused on unexplored branches and loops

• 100 runs of TACO per item, heuristic and platform

30

Evaluation - Scalability of TACO

TACO – RTNS 2018

31

• Count analysed items if:
- TACO generates a testport
- Compiles with drivers
- Runs and generate traces

• Higher is better
- Ore items processed y framework
- Higher likelihood for coverage

Evaluation - Scalability of TACO

TACO – RTNS 2018

32

• More than 90% items analysed
- Contextual information missing from model

• Less items analysed on VISIUMCORE
- Driver is platform independent
- but lower resources on target

• Less items analysed using BCHLr
- Higher-entry memory requirements

Evaluation - Portability of Driver

TACO – RTNS 2018

33

• Compare coverage
- Across platforms
- For a same item
- For a same heuristic

• Closer to y=x is better
- Same performance across platforms
- Coverage collectable on Host

Evaluation - Portability of Driver

TACO – RTNS 2018

34

• Compare absolute coverage difference
- Across platforms
- For a same item
- For a same heuristic

• Lower is better
- Same performance across platforms
- Coverage collectable on Host

• Small differences across platforms
- Less than 15 functions > 1% difference
- Variations due to PRNG

Evaluation - Coverage

TACO – RTNS 2018

35

Evaluation - Coverage

TACO – RTNS 2018

36

Achieved coverage level

Platform and driver

Evaluation - Coverage

TACO – RTNS 2018

37

better

Evaluation - System-wide coverage

TACO – RTNS 2018

38

root()

funA()

funB() funC()

funD()

funE()

funB()

root()

funA()

funB() funC()

funD()

funE()

funB()

Evaluation - System-wide coverage

TACO – RTNS 2018

39

root()

funA()

funB() funC()

funD()

funE()

funB()

Evaluation - System-wide coverage

TACO – RTNS 2018

40

• More functions supported on i686-BCHLr
• Less items compiled with VISIUMCORE-BCHLr

Evaluation - Reducing on-target testing

TACO – RTNS 2018

41

• Same coverage achieved on Host
• 22 Millions test vectors, 48 Hours

• 6131 test vectors, 658 items, 4 Hours on target

Conclusion

TACO – RTNS 2018

• Test Automation for COverage
- Exercise all inputs of a test item
- Drive the code through different paths
- Drive search for specific targets

• Scales to full system analysis
• Achieves reliable test coverage
• Reduces on-target testing
• Offers a collection of interacting tools
- Easy to parse, reuse, and extend

42

Future work

TACO – RTNS 2018

43

• Provide timing estimates early in the application life cycle
● Rely on low-cost platforms
● Correlate timings on Target and Host

• Quantify confidence and certainty in achieved coverage
● Define stopping criteria for search algorithm
● Understand returns of additional computational effort

• Refine test vector selection from host results
● Target longest execution paths
● Assess changes to the software

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

