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Context

TACO – RTNS 2018

• Rolls-Royce VISIUMCORE platform

 Integrated instruction tracing and timing

 Instructions’ execution is time-invariant

 Limited time-relevant state

• WCET Timing analysis
- Builds WCET from low-level block timings
- Requires full coverage of executed code

• Full Authority Digital Engine Controller
- Designed to DO-178C DAL A guidelines
- Coverage through low-level tests

• Automatic test case generation technique [1]
- Provide better coverage and timing data
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[1] Stephen Law and Iain Bate, Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis, ECRTS, 2016
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Formal testing late in life cycle

On-Target testing is expensive
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function F (B: Boolean, C: Byte)

A > 0.75

B

•  

[1] Stephen Law and Iain Bate, Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis, ECRTS, 2016
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function F (B: Boolean, C: Byte)

A > 0.75

B

{A:  0.5, B: True, C: 7}

Generate a test vector

[1] Stephen Law and Iain Bate, Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis, ECRTS, 2016
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function F (B: Boolean, C: Byte)

A > 0.75

B

{A:  0.5, B: True, C: 7}

Execute the function

[1] Stephen Law and Iain Bate, Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis, ECRTS, 2016
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function F (B: Boolean, C: Byte)

A > 0.75

B

{A:  0.5, B: True, C: 7}

Collect coverage metrics

[1] Stephen Law and Iain Bate, Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis, ECRTS, 2016
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function F (B: Boolean, C: Byte)

A > 0.75

B

{A:  0.5, B: True, C: 7}

{A:  0.95, B: True, C: 7}

Mutate the test vector

[1] Stephen Law and Iain Bate, Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis, ECRTS, 2016
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function F (B: Boolean, C: Byte)

A > 0.75

B

{A:  0.5, B: True, C: 7}

{A:  0.95, B: True, C: 7}

[1] Stephen Law and Iain Bate, Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis, ECRTS, 2016
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function F (B: Boolean, C: Byte)

A > 0.75

B

{A:  0.5, B: True, C: 7}

{A:  0.95, B: True, C: 7}

{A:  0.95, B: True, C: 6}

Reject poor solutions

[1] Stephen Law and Iain Bate, Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis, ECRTS, 2016
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A > 0.75

B

{A:  0.5, B: True, C: 7}

{A:  0.95, B: True, C: 7}

{A:  0.95, B: True, C: 6}

{A:  0.95, B: True, C: 7}

[1] Stephen Law and Iain Bate, Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis, ECRTS, 2016
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function F (B: Boolean, C: Byte)

A > 0.75

B

{A:  0.5, B: True, C: 7}

{A:  0.95, B: True, C: 7}

{A:  0.95, B: True, C: 6}

{A:  0.95, B: True, C: 7}

{A:  0.95, B: False, C: 7}

[1] Stephen Law and Iain Bate, Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis, ECRTS, 2016
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function F (B: Boolean, C: Byte)

A > 0.75

B

 Search-based timing analysis tool

 Support measurement-based WCET analysis

 Drive the execution of a tested function

 Generate a sequence of test vectors
 Solutions evaluated on coverage metrics

 Executed blocks of code, loops branches

 Different heuristics target different objectives

Requires knowledge about functions’ inputs, types and value ranges
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Driver

Executable

Testport

Instrumented codeSource code

System Model
Profit

The system model captures all software interfaces and requirementsThe system model captures all software interfaces and requirements
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Driver

Executable

Testport

Instrumented codeSource code

System Model
Profit

The source code is generated from the modelThe source code is generated from the model
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Driver

Executable

Testport

Instrumented codeSource code

System Model
Profit

Instrumentation inserts primitives to capture timing and coverageInstrumentation inserts primitives to capture timing and coverage
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Driver

Executable

Testport

Instrumented codeSource code

System Model
Profit

The Driver [1] produces test vectors to be executed The Driver [1] produces test vectors to be executed 
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Driver

Executable

Testport

Instrumented codeSource code

System Model
Profit

A testport is also generated from the system model A testport is also generated from the system model 
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Testport

DriverSource code

• The testport is the interface between the test function and driver
- Initialises inputs, runs and measures the function
- Provides feedback to the driver

• A common interface means item and driver can be swapped
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Testport

DriverSource code

• The testport is the interface between the test function and driver
- Initialises inputs, runs and measures the function
- Provides feedback to the driver

• A common interface means item and driver can be swapped
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A testport is also generated from the system model A testport is also generated from the system model 
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Driver

Executable

Testport

Instrumented codeSource code

System Model
Profit

Testport, driver and tested function are combined Testport, driver and tested function are combined 
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Driver

Executable

Testport

Instrumented codeSource code

System Model
Profit

Generated traces can be processed for analysis Generated traces can be processed for analysis 
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Driver

Executable

Testport

Instrumented codeSource code

System Model
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Executable

Testport

Instrumented codeSource code

System Model



Reducing on-target testing

TACO – RTNS 2018

26

• The coverage technique [1] relies only on coverage information
- Coverage is measured at the source level
- Coverage is platform-independent

• Host-based testing can reduce the requirements on target
- Collect coverage and inputs on host
- Replay selection of tests on target

Host



Reducing on-target testing

TACO – RTNS 2018

27

• The coverage technique [1] relies only on coverage information
- Coverage is measured at the source level
- Coverage is platform-independent

• Host-based testing can reduce the requirements on target
- Collect coverage and inputs on host
- Replay selection of tests on target

Host



Reducing on-target testing

TACO – RTNS 2018

28

• The coverage technique [1] relies only on coverage information
- Coverage is measured at the source level
- Coverage is platform-independent

• Host-based testing can reduce the requirements on target
- Collect coverage and inputs on host
- Replay selection of tests on target

VISIUMCORE



Evaluation -  Objectives
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• TACO scalability 
- Can TACO be automatically applied to a full control system?

• Driver portability: 
- Can [1] be applied on different platforms?

• Driver scalability: 
- Can [1] be applied to a full control system?
- What coverage can be achieved?

• Reducing on-target testing: 
- Can TACO reduce requirements on target?
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Evaluation -  Configuration
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• Unmodified control system
- Designed according to DO-178C as DAL-A
- 1800 items for analysis, including 250+ scheduled tasks

• Two evaluation platforms:
- Target: VISIUMCORE
- Host: i686

• Two heuristics for driver:
- Ran: Random search through input space
- BCHLr: Search focused on unexplored branches and loops

• 100 runs of TACO per item, heuristic and platform
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Evaluation -  Scalability of TACO
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• Count analysed items if:
- TACO generates a testport
- Compiles with drivers
- Runs and generate traces

• Higher is better
- Ore items processed y framework
- Higher likelihood for coverage
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• More than 90% items analysed
- Contextual information missing from model

• Less items analysed on VISIUMCORE
- Driver is platform independent
- but lower resources on target

• Less items analysed using BCHLr
- Higher-entry memory requirements
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• Compare coverage
- Across platforms
- For a same item
- For a same heuristic

• Closer to y=x is better
- Same performance across platforms
- Coverage collectable on Host



Evaluation -  Portability of Driver

TACO – RTNS 2018

34

• Compare absolute coverage difference
- Across platforms
- For a same item
- For a same heuristic

• Lower is better
- Same performance across platforms
- Coverage collectable on Host

• Small differences across platforms
- Less than 15 functions > 1% difference
- Variations due to PRNG



Evaluation -  Coverage

TACO – RTNS 2018

35



Evaluation -  Coverage
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Achieved coverage level

Platform and driver



Evaluation -  Coverage
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better



Evaluation -  System-wide coverage
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Evaluation - System-wide coverage
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• More functions supported on i686-BCHLr
• Less items compiled with VISIUMCORE-BCHLr



Evaluation -  Reducing on-target testing
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• Same coverage achieved on Host
• 22 Millions test vectors, 48 Hours

• 6131 test vectors, 658 items, 4 Hours on target



Conclusion
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• Test Automation for COverage
- Exercise all inputs of a test item
- Drive the code through different paths
- Drive search for specific targets

• Scales to full system analysis
• Achieves reliable test coverage 
• Reduces on-target testing
• Offers a collection of interacting tools
- Easy to parse, reuse, and extend
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Future work
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• Provide timing estimates early in the application life cycle
● Rely on low-cost platforms
● Correlate timings on Target and Host

• Quantify confidence and certainty in achieved coverage
● Define stopping criteria for search algorithm
● Understand returns of additional computational effort

• Refine test vector selection from host results
● Target longest execution paths
● Assess changes to the software
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