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Outline 
!  Introduction 
!  Contribution 
!  Conclusion  
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Context – control/command applications 
"  Control / command applications 

–  Safety-critical with DAL – Design Assurance Level A 
–  Under certification, and certification development process 

"  Example: flight control system 

roll 
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yaw 

roll 

yaw 

pitch [wikipedia] 
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Current development cycle 
High-level design – control engineering  

"  Steps:  
•  Coding of elementary blocks: Lustre/Scade 
•  Coding of multi-periodic assemblies: ad hoc 

Implementation 

"  Example: flight 
control systems 

multi-periodic, 
large size, under 
temporal and 
precedence 
constraints.  
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Current development cycle 
High-level design – control engineering 

Implementation 

"  Steps:  
•  Code generation:  

"  Scade # C: KCG 
"  ad hoc # scheduling + C 
"  C # executable: gcc  

"  WCET: aiT from Absint 

(Mono processor) 

Integration on the target 
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Prelude – multi-periodic language 

imported node h_filter (h :real)  
returns (h_f :real) wcet 25; 
… 
node assemblage (h_c : real rate(100,0) ;  
                                  Va_c : real rate(100,0) ) 
 returns ( delta_x_c  ,   delta_e_c )  
var vz_c, va,  az, q, vz , va_f, vz_f,  
        az_f , q_f :real;   
 let  

 va_f  = va_filter(va/^ 2) ; 
 delta_x_c = va_speed_control(Va_c/^ 20 , va_f/^ 2 ,q_f/^ 2 ,vz_f/^ 2) ; 
 vz_f  = vz_filter(vz/^ 2) ; 
 delta_e_c = vz_speed_control( vz_c ,vz_f/^ 2 ,q_f/^ 2 ,az_f/^ 2) ; 
 az_f  = az_filter(az/^ 2) ; 
 h_f  = h_filter(h/^ 2) ; 
 q_f  = q_filter(q/^ 2) ; 
 vz_c = altitude_hold(h_c/^ 20 , h_f/^2) ; 
 (va,  az, q, vz , h)  = aircraft_dynamics( (41814.0000000000 fby delta_x_c)*^ 4 , 
     (0.0120000000 fby delta_e_c)*^ 4) ; 

tel 

!  Synchronous language 
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Context – multi-core COTS 
Use of multi/many-core COTS in safety critical 

systems. Needs in terms of: 
–  Performance 
–  maturity 
–  affordable cost 
–  predictability (WCET computable) 
–  dependability 
–  programmability  

“Open Integrated 
Modular Avionic 
(IMA): State of the Art 
and future 
Development Road 
Map at Airbus 
Deutschland”, Airbus 
Deutschland Gmbh 
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48 CHAPTER 4. EXECUTION MODEL FOR THE KALRAY MPPA R�-256
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Figure 4.1: Architecture of the of the KALRAY MPPA R�-256

4.1.1 Overview

The KALRAY MPPA R�-256 is organized in 16 compute clusters dedicated to run user code.
Four additional I/O clusters serve as interfaces for managing communications with out-of-
chip components such as DDR-SDRAM or Ethernet. As depicted in Figure 4.1, all the
clusters are interconnected with a dual 2D-torus NoC enabling point-to-point communica-
tions with explicit message-passing.

4.1.2 Compute clusters

As depicted in Figure 4.2, each compute cluster features:

• 16 cores, denoted as the Processing Elements (or PEs), for executing user code;

• 1 additional core denoted as Resource Manager or (RM) in charge of managing and
configuring the resources that are local to the cluster;

• 1 Debug and Support Unit (or DSU) to ease programming with JTAG debugging;

• 1 Direct Memory Access (or DMA) unit to automate data sending over the NoC;

• 2MiB of shared SRAM organized in 16 independent banks;

• 1 access to each NoC.

Kalray MPPA 
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Multi-core certification problem  
!  Aeronautic – certification standards 

–  DO178 B/C, 1992 /2012 
–  Position Paper CAST-32A Multi-core Processors, 2014 - 2016 
–  White Paper FAA on Issues Associated with Interference Applied to 

Multicore Processors, 2017 

!  Purposes: set of guidances for software planning and verification on multi-
core chips, with a particular emphasis on timing considerations and error 
handling 

!  The compilation framework is in the scope of the high level objective  
–  « Interference channels and resource usage »  
–  Issue: Shared resources on a platform can lead to unexpected delays or 

loss of data 
–  Argumentation: the applicant has to identify all the interference channels 

in the final configuration and shall argue that the resource demand does 
not exceed the resource availability 
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Former solutions at ONERA 
!  Multi-periodic assembly expressed in Prelude 
!  Execution model  

–  to reduce or avoid any temporal interferences 
–  A set of programming rules, based on off line mapping and scheduling 

!  Script to generate the glue code 
!  WCET measured based 

Functions: 
Lustre programs 

Glue: Prelude 
program 

Execution model: 
manually defined 

Generated C 
code 

Generated C 
code 

Manual and 
generated C  code 

lustrec preludec IBM OPL + scripts 

gcc 

Executable with partitioned non-
preemptive off-line schedule 



Claire Pagetti – RTNS 2018 10/28 

Overall new approach 
1.  Definition of an execution model for the target (AER) 
2.  Modification of Prelude compiler 
3.  Modification of WCC to generate mapped and scheduled applications 

Functions: 
Lustre programs 

Glue: Prelude 
program 

Generated C 
code 

-  AER-based C code 
-  XML tasks description 

Executable with partitioned non-
preemptive off-line schedule 

lustrec preludec 

WCC –wcet_aware_mapping  
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Outline 
!  Introduction 
!  Contribution 

–  Design choice: AER model 
–  Prelude extension with AER function generation 
–  WCC extension for AER functions 

!  Conclusion   
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Processors supported by WCC 
!  TriCore (single core) and ARM (1 to 8 cores) 
!  ARM architecture 

–  Core at 1 GHz 
–  Private local SPM (scratchpad memory) 
–  only local addressing on local SPM is supported, meaning that a core 

i cannot access the SPM of core j.  
–  Bus arbitrated with a TDMA (Time division multiple access) protocol.  

# next generation of embedded processors for automotive may share 
similar features.  
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Predictable solution – Execution model  
!  Execution model 

–  Set of rules to be followed by the designer to avoid or at reduce the 
temporal interferences 

–  Separate the moment of pure execution and shared resource access 

!  AER model [Durrieu et al, 2014] 
1.  Memory management 

"  Codes and data stored statically and locally 
"  Exchanged variables stored in specific zones MPB 

2.  Mapping scheduling strategies 
"  Differentiate  

•  Acquisition , 
Execution, Restitution  

"  Static sequencing & mapping 

L1D 

L2 SRAM 

core 

L1I 

MPB 

ex config TMS 
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ARM execution model 
!  Rule 1:  

–  non preemptive partitionned off-line pre-computed schedule 
!  Rule 2:  

–  all sections are stored in the local SPM 
–  except the exchanged data which are in the flash 

!  Rule 3: 
–   each function is split in 3 parts AER. During A, each “global variable” 

is copied in a local variable. During R, the value of a local variable is 
assigned to the produced variable 

!  Rule 4: 
–  A and R phases always occur during the TDMA slots of the core 

hosting the function.  
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Outline 
!  Introduction 
!  Contribution 

–  Design choice: AER model 
–  Prelude extension with AER function generation 
–  WCC extension for AER functions 

!  Conclusion   
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Example of AER execution 
!  For the ROSACE controller 

Legend: 
vzca = vz_control_A 
vzce = vz_control_E 
vzcr = vz_control_R 
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Code generation – step 1 
!  Wrapping lustreC output as imported node C# C: genwrapper (ONERA/

LIFL) 
!  Assembly # C: preludec 
!  For each function f, generation of f_A, f_E and f_R 

static double h_filter110_fun_h_locread; /* local copy of a consumed data */ 
static double h_filter110_fun_h_f_locwrite; ; /* local copy of a produced data */ 

int h_filter110_A(void* args) 
{ 
  static int h_rcell=0; 
  static int instance=0; 

  read_val(aircraft_dynamics73_h_h_filter110_h_id, h_rcell, sizeof(h_filter110_fun_h_locread), 
 &h_filter110_fun_h_locread); /* copy of global variable in the local copy */ 

  h_rcell=(h_rcell+1)%2; /* communication protocol management */ 
  instance++;  
  return 0; } 
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Code generation – step 2 
!  Global variables generation and link with the buffers id 

enum { 
 h_filter110_h_f_altitude_hold79_hf_id,   
 aircraft_dynamics73_h_h_filter110_h_id, 
 altitude_hold79_Vz_c_vz_speed_control104_Vz_c_id, 
…, PLUD_BUFFER_NUMBER} 

double  aircraft_dynamics73_h_h_filter110_h [2]; 
double  h_filter110_h_f_altitude_hold79_hf [2]; 
… 

void * table_address [PLUD_BUFFER_NUMBER] = 
{(void *) h_filter110_h_f_altitude_hold79_hf, 
(void *) aircraft_dynamics73_h_h_filter110_h, 
…} 
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Outline 
!  Introduction 
!  Contribution 

–  Design choice: AER model 
–  Prelude extension with AER function generation 
–  WCC extension for AER functions 

!  Conclusion   
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Interaction with WCC 
!  Input description 

–  Architecture description in an xml file (hard coded) 
–  Application description in an xml file (generated by preludec) 

!  Extension in wcc 

<task> 
  <sources> 
    <file>h_filter.c 
      <entrypoint> 
          <function>h_filter_a</function>  
          <period> 10 </period> 
      </entrypoint> 
      <entrypoint> … 
</file>… 

High level ICD-
C Low level LLIR 

WCET-aware 
mapping aiT WCET results 

WCC 
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Algorithm – Integration strategy  
procedure WCET aware mapping (Config appli)  

 get SPM size 
get nb core, bus slot 
for function : t in appli do  
  get t.period, t.name, t.subfunctions  
  call aiT 

 get t.wcetx, t.sizex (all sections, x ∈ {A, E, R})  
 end for  
 call OPL IBM solver to solve the mapping problem  
 for function : t in appli do  
  get t.core, t.startx  
 end for  
 for core : c in Cores do 

 generate C local scheduler 
 generate new xml file (with the correct mapping and scheduling)  

 end for 

Step 1: hardware 
and application 
information 
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Algorithm – Integration strategy  
procedure WCET aware mapping (Config appli)  

 get SPM size 
get nb core, bus slot 
for function : t in appli do  
  get t.period, t.name, t.subfunctions  
  call aiT 

 get t.wcetx, t.sizex (all sections, x ∈ {A, E, R})  
 end for  
 call OPL IBM solver to solve the mapping problem  
 for function : t in appli do  
  get t.core, t.startx  
 end for  
 for core : c in Cores do 

 generate C local scheduler 
 generate new xml file (with the correct mapping and scheduling)  

 end for 

Step 2: off-line 
mapping and 
schedule 
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Conditional time-intervals 
!  OPL IBM constraint programming modelling with Conditional Time-Intervals 

–  Very efficient for non preemptive schedules  
–  Presented by Quentin Perret at RTNS 2016 (and a paper of this year) 

!  Inputs  
–  Architecture 

"  Cores, SPMsize 
"  MAF of TDMA, StartBusSlot[nbCores]  

–  Application   
"  TaskList, TaskProps[TaskList] (e.g. TaskProps[t].period)  

–  Pre-processing unrolling of tasks in Jobs, JobProps[Jobs]  

!  Decision variables 
–  interval phaseX[j in Jobs]  
–  optional interval phaseX_c[j in Jobs][c in Cores]  
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Formalization in OPL 
!  Constraints  

–  Specific to conditional time intervals 
     ∀j ∈ Jobs,  alternative(phaseX[j], all(c ∈ Cores) phaseX_c[j][c])  

 ∀c ∈ Cores, Σj pulse(ΣX phaseX_c[j][c], 1) ≤ 1  

–  Scheduling (A before E and E before R) 
∀j ∈ Jobs, 

endBeforeStart(phaseA[j], phaseE[j])  
 endBeforeStart(phaseE[j], phaseR[j])  

–  All phases on the same core 
∀j ∈ Jobs,c ∈ Cores,X ∈ {A,E,R} 

presenceOf (phaseA_c[JobProps[j].function][c])  
     == presenceOf (phaseX_c[j][c])  
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Formalization in OPL 
!  Constraints 

–  Memory constraints 
      ∀c ∈ Cores,  
   Σt presenceOf(phaseA_c[t][c]) ×(Σx TaskProps[t].sizex) ≤ SPMsize 

–  A and R on the TDMA 
   ∀j ∈ Jobs,c ∈ Cores,X ∈ {A,R}  
     presenceOf(phaseX c[j][c]) ⇒  
               ((startOf(phaseX[j]))mod MAF == StartSlotBus[c])  
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Algorithm – Integration strategy  
procedure WCET aware mapping (Config appli)  

 get SPM size 
get nb core, bus slot 
for function : t in appli do  
  get t.period, t.name, t.subfunctions  
  call aiT 

 get t.wcetx, t.sizex (all sections, x ∈ {A, E, R})  
 end for  
 call OPL IBM solver to solve the mapping problem  
 for function : t in appli do  
  get t.core, t.startx  
 end for  
 for core : c in Cores do 

 generate C local scheduler 
 generate new xml file (with the correct mapping)  

 end for 

Step 3: generate 
C schedule on 
each core 
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Experiments 
!  Works well on several controllers, e.g. ROSACE 

!  WATERS 2017 challenge 
‒  1250 runnables, 10000 labels  

preludec 

0m0.114s  

Step 1 OPL Step 3 

1m45.132s  0m0.601s  0m20.481s  

preludec 

0m9.163s  

Step 1 OPL Step 3 

3550m15.365s  0m36,074s  30m22.548s  
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Conclusion 
!  Complete framework from synchronous programs to predictable 

executables 

!  More experiments 
!  Execution on a real target 
!  We followed a “bottom-up” approach # re-think the internal 

representations to support AER and synchronous semantics features 

    Thanks for your attention 


