
Claire Pagetti – RTNS 2018 1/28 

Automated generation of time-
predictable executables on multi-

core hardware  

Claire Pagetti, Julien Forget, Heiko Falk, 
Dominic Oehlert, and Arno Luppold 

October 10th 2018 
RTNS 2018 



Claire Pagetti – RTNS 2018 2/28 

Outline 
!  Introduction 
!  Contribution 
!  Conclusion  



Claire Pagetti – RTNS 2018 3/28 

Context – control/command applications 
"  Control / command applications 

–  Safety-critical with DAL – Design Assurance Level A 
–  Under certification, and certification development process 

"  Example: flight control system 

roll 

pitch 
yaw 

roll 

yaw 

pitch [wikipedia] 



Claire Pagetti – RTNS 2018 4/28 

Current development cycle 
High-level design – control engineering  

"  Steps:  
•  Coding of elementary blocks: Lustre/Scade 
•  Coding of multi-periodic assemblies: ad hoc 

Implementation 

"  Example: flight 
control systems 

multi-periodic, 
large size, under 
temporal and 
precedence 
constraints.  



Claire Pagetti – RTNS 2018 5/28 

Current development cycle 
High-level design – control engineering 

Implementation 

"  Steps:  
•  Code generation:  

"  Scade # C: KCG 
"  ad hoc # scheduling + C 
"  C # executable: gcc  

"  WCET: aiT from Absint 

(Mono processor) 

Integration on the target 



Claire Pagetti – RTNS 2018 6/28 

Prelude – multi-periodic language 

imported node h_filter (h :real)  
returns (h_f :real) wcet 25; 
… 
node assemblage (h_c : real rate(100,0) ;  
                                  Va_c : real rate(100,0) ) 
 returns ( delta_x_c  ,   delta_e_c )  
var vz_c, va,  az, q, vz , va_f, vz_f,  
        az_f , q_f :real;   
 let  

 va_f  = va_filter(va/^ 2) ; 
 delta_x_c = va_speed_control(Va_c/^ 20 , va_f/^ 2 ,q_f/^ 2 ,vz_f/^ 2) ; 
 vz_f  = vz_filter(vz/^ 2) ; 
 delta_e_c = vz_speed_control( vz_c ,vz_f/^ 2 ,q_f/^ 2 ,az_f/^ 2) ; 
 az_f  = az_filter(az/^ 2) ; 
 h_f  = h_filter(h/^ 2) ; 
 q_f  = q_filter(q/^ 2) ; 
 vz_c = altitude_hold(h_c/^ 20 , h_f/^2) ; 
 (va,  az, q, vz , h)  = aircraft_dynamics( (41814.0000000000 fby delta_x_c)*^ 4 , 
     (0.0120000000 fby delta_e_c)*^ 4) ; 

tel 

!  Synchronous language 



Claire Pagetti – RTNS 2018 7/28 

Context – multi-core COTS 
Use of multi/many-core COTS in safety critical 

systems. Needs in terms of: 
–  Performance 
–  maturity 
–  affordable cost 
–  predictability (WCET computable) 
–  dependability 
–  programmability  

“Open Integrated 
Modular Avionic 
(IMA): State of the Art 
and future 
Development Road 
Map at Airbus 
Deutschland”, Airbus 
Deutschland Gmbh 

Memory Subsystem

C66x

CorePac

L2 SRAM

L1P
SRAM

L1D
SRAM

HyperLink TeraNet

EDMA

PLL

Power Mgt

Semaphore

Boot ROM

Debug

MSMC

Controller

MSMC

SRAM
64-bit

DDR3

EMIF

DDR

Memory

512M

4M

32K
32K

512K

eight c66x

DSP cores

Texas Instruments TMS320C6678 

48 CHAPTER 4. EXECUTION MODEL FOR THE KALRAY MPPA R�-256

South IO cluster

North IO cluster

W
es

tI
O

cl
us

te
r

EastIO
cluster

C0 C1 C2 C3

C4 C5 C6 C7

C8 C9 C10 C11

C12 C13 C14 C15

R0 R1 R2 R3

R4 R5 R6 R7

R8 R9 R10 R11

R12 R13 R14 R15

Rn
0 Rn

1 Rn
2 Rn

3

Rs
0 Rs

1 Rs
2 Rs

3

Rw
0

Rw
1

Rw
2

Rw
3

Re
0

Re
1

Re
2

Re
3

Figure 4.1: Architecture of the of the KALRAY MPPA R�-256

4.1.1 Overview

The KALRAY MPPA R�-256 is organized in 16 compute clusters dedicated to run user code.
Four additional I/O clusters serve as interfaces for managing communications with out-of-
chip components such as DDR-SDRAM or Ethernet. As depicted in Figure 4.1, all the
clusters are interconnected with a dual 2D-torus NoC enabling point-to-point communica-
tions with explicit message-passing.

4.1.2 Compute clusters

As depicted in Figure 4.2, each compute cluster features:

• 16 cores, denoted as the Processing Elements (or PEs), for executing user code;

• 1 additional core denoted as Resource Manager or (RM) in charge of managing and
configuring the resources that are local to the cluster;

• 1 Debug and Support Unit (or DSU) to ease programming with JTAG debugging;

• 1 Direct Memory Access (or DMA) unit to automate data sending over the NoC;

• 2MiB of shared SRAM organized in 16 independent banks;

• 1 access to each NoC.

Kalray MPPA 



Claire Pagetti – RTNS 2018 8/28 

Multi-core certification problem  
!  Aeronautic – certification standards 

–  DO178 B/C, 1992 /2012 
–  Position Paper CAST-32A Multi-core Processors, 2014 - 2016 
–  White Paper FAA on Issues Associated with Interference Applied to 

Multicore Processors, 2017 

!  Purposes: set of guidances for software planning and verification on multi-
core chips, with a particular emphasis on timing considerations and error 
handling 

!  The compilation framework is in the scope of the high level objective  
–  « Interference channels and resource usage »  
–  Issue: Shared resources on a platform can lead to unexpected delays or 

loss of data 
–  Argumentation: the applicant has to identify all the interference channels 

in the final configuration and shall argue that the resource demand does 
not exceed the resource availability 



Claire Pagetti – RTNS 2018 9/28 

Former solutions at ONERA 
!  Multi-periodic assembly expressed in Prelude 
!  Execution model  

–  to reduce or avoid any temporal interferences 
–  A set of programming rules, based on off line mapping and scheduling 

!  Script to generate the glue code 
!  WCET measured based 

Functions: 
Lustre programs 

Glue: Prelude 
program 

Execution model: 
manually defined 

Generated C 
code 

Generated C 
code 

Manual and 
generated C  code 

lustrec preludec IBM OPL + scripts 

gcc 

Executable with partitioned non-
preemptive off-line schedule 



Claire Pagetti – RTNS 2018 10/28 

Overall new approach 
1.  Definition of an execution model for the target (AER) 
2.  Modification of Prelude compiler 
3.  Modification of WCC to generate mapped and scheduled applications 

Functions: 
Lustre programs 

Glue: Prelude 
program 

Generated C 
code 

-  AER-based C code 
-  XML tasks description 

Executable with partitioned non-
preemptive off-line schedule 

lustrec preludec 

WCC –wcet_aware_mapping  



Claire Pagetti – RTNS 2018 11/28 

Outline 
!  Introduction 
!  Contribution 

–  Design choice: AER model 
–  Prelude extension with AER function generation 
–  WCC extension for AER functions 

!  Conclusion   



Claire Pagetti – RTNS 2018 12/28 

Processors supported by WCC 
!  TriCore (single core) and ARM (1 to 8 cores) 
!  ARM architecture 

–  Core at 1 GHz 
–  Private local SPM (scratchpad memory) 
–  only local addressing on local SPM is supported, meaning that a core 

i cannot access the SPM of core j.  
–  Bus arbitrated with a TDMA (Time division multiple access) protocol.  

# next generation of embedded processors for automotive may share 
similar features.  



Claire Pagetti – RTNS 2018 13/28 

Predictable solution – Execution model  
!  Execution model 

–  Set of rules to be followed by the designer to avoid or at reduce the 
temporal interferences 

–  Separate the moment of pure execution and shared resource access 

!  AER model [Durrieu et al, 2014] 
1.  Memory management 

"  Codes and data stored statically and locally 
"  Exchanged variables stored in specific zones MPB 

2.  Mapping scheduling strategies 
"  Differentiate  

•  Acquisition , 
Execution, Restitution  

"  Static sequencing & mapping 

L1D 

L2 SRAM 

core 

L1I 

MPB 

ex config TMS 



Claire Pagetti – RTNS 2018 14/28 

ARM execution model 
!  Rule 1:  

–  non preemptive partitionned off-line pre-computed schedule 
!  Rule 2:  

–  all sections are stored in the local SPM 
–  except the exchanged data which are in the flash 

!  Rule 3: 
–   each function is split in 3 parts AER. During A, each “global variable” 

is copied in a local variable. During R, the value of a local variable is 
assigned to the produced variable 

!  Rule 4: 
–  A and R phases always occur during the TDMA slots of the core 

hosting the function.  



Claire Pagetti – RTNS 2018 15/28 

Outline 
!  Introduction 
!  Contribution 

–  Design choice: AER model 
–  Prelude extension with AER function generation 
–  WCC extension for AER functions 

!  Conclusion   



Claire Pagetti – RTNS 2018 16/28 

Example of AER execution 
!  For the ROSACE controller 

Legend: 
vzca = vz_control_A 
vzce = vz_control_E 
vzcr = vz_control_R 



Claire Pagetti – RTNS 2018 17/28 

Code generation – step 1 
!  Wrapping lustreC output as imported node C# C: genwrapper (ONERA/

LIFL) 
!  Assembly # C: preludec 
!  For each function f, generation of f_A, f_E and f_R 

static double h_filter110_fun_h_locread; /* local copy of a consumed data */ 
static double h_filter110_fun_h_f_locwrite; ; /* local copy of a produced data */ 

int h_filter110_A(void* args) 
{ 
  static int h_rcell=0; 
  static int instance=0; 

  read_val(aircraft_dynamics73_h_h_filter110_h_id, h_rcell, sizeof(h_filter110_fun_h_locread), 
 &h_filter110_fun_h_locread); /* copy of global variable in the local copy */ 

  h_rcell=(h_rcell+1)%2; /* communication protocol management */ 
  instance++;  
  return 0; } 



Claire Pagetti – RTNS 2018 18/28 

Code generation – step 2 
!  Global variables generation and link with the buffers id 

enum { 
 h_filter110_h_f_altitude_hold79_hf_id,   
 aircraft_dynamics73_h_h_filter110_h_id, 
 altitude_hold79_Vz_c_vz_speed_control104_Vz_c_id, 
…, PLUD_BUFFER_NUMBER} 

double  aircraft_dynamics73_h_h_filter110_h [2]; 
double  h_filter110_h_f_altitude_hold79_hf [2]; 
… 

void * table_address [PLUD_BUFFER_NUMBER] = 
{(void *) h_filter110_h_f_altitude_hold79_hf, 
(void *) aircraft_dynamics73_h_h_filter110_h, 
…} 



Claire Pagetti – RTNS 2018 19/28 

Outline 
!  Introduction 
!  Contribution 

–  Design choice: AER model 
–  Prelude extension with AER function generation 
–  WCC extension for AER functions 

!  Conclusion   



Claire Pagetti – RTNS 2018 20/28 

Interaction with WCC 
!  Input description 

–  Architecture description in an xml file (hard coded) 
–  Application description in an xml file (generated by preludec) 

!  Extension in wcc 

<task> 
  <sources> 
    <file>h_filter.c 
      <entrypoint> 
          <function>h_filter_a</function>  
          <period> 10 </period> 
      </entrypoint> 
      <entrypoint> … 
</file>… 

High level ICD-
C Low level LLIR 

WCET-aware 
mapping aiT WCET results 

WCC 



Claire Pagetti – RTNS 2018 21/28 

Algorithm – Integration strategy  
procedure WCET aware mapping (Config appli)  

 get SPM size 
get nb core, bus slot 
for function : t in appli do  
  get t.period, t.name, t.subfunctions  
  call aiT 

 get t.wcetx, t.sizex (all sections, x ∈ {A, E, R})  
 end for  
 call OPL IBM solver to solve the mapping problem  
 for function : t in appli do  
  get t.core, t.startx  
 end for  
 for core : c in Cores do 

 generate C local scheduler 
 generate new xml file (with the correct mapping and scheduling)  

 end for 

Step 1: hardware 
and application 
information 



Claire Pagetti – RTNS 2018 22/28 

Algorithm – Integration strategy  
procedure WCET aware mapping (Config appli)  

 get SPM size 
get nb core, bus slot 
for function : t in appli do  
  get t.period, t.name, t.subfunctions  
  call aiT 

 get t.wcetx, t.sizex (all sections, x ∈ {A, E, R})  
 end for  
 call OPL IBM solver to solve the mapping problem  
 for function : t in appli do  
  get t.core, t.startx  
 end for  
 for core : c in Cores do 

 generate C local scheduler 
 generate new xml file (with the correct mapping and scheduling)  

 end for 

Step 2: off-line 
mapping and 
schedule 



Claire Pagetti – RTNS 2018 23/28 

Conditional time-intervals 
!  OPL IBM constraint programming modelling with Conditional Time-Intervals 

–  Very efficient for non preemptive schedules  
–  Presented by Quentin Perret at RTNS 2016 (and a paper of this year) 

!  Inputs  
–  Architecture 

"  Cores, SPMsize 
"  MAF of TDMA, StartBusSlot[nbCores]  

–  Application   
"  TaskList, TaskProps[TaskList] (e.g. TaskProps[t].period)  

–  Pre-processing unrolling of tasks in Jobs, JobProps[Jobs]  

!  Decision variables 
–  interval phaseX[j in Jobs]  
–  optional interval phaseX_c[j in Jobs][c in Cores]  



Claire Pagetti – RTNS 2018 24/28 

Formalization in OPL 
!  Constraints  

–  Specific to conditional time intervals 
     ∀j ∈ Jobs,  alternative(phaseX[j], all(c ∈ Cores) phaseX_c[j][c])  

 ∀c ∈ Cores, Σj pulse(ΣX phaseX_c[j][c], 1) ≤ 1  

–  Scheduling (A before E and E before R) 
∀j ∈ Jobs, 

endBeforeStart(phaseA[j], phaseE[j])  
 endBeforeStart(phaseE[j], phaseR[j])  

–  All phases on the same core 
∀j ∈ Jobs,c ∈ Cores,X ∈ {A,E,R} 

presenceOf (phaseA_c[JobProps[j].function][c])  
     == presenceOf (phaseX_c[j][c])  



Claire Pagetti – RTNS 2018 25/28 

Formalization in OPL 
!  Constraints 

–  Memory constraints 
      ∀c ∈ Cores,  
   Σt presenceOf(phaseA_c[t][c]) ×(Σx TaskProps[t].sizex) ≤ SPMsize 

–  A and R on the TDMA 
   ∀j ∈ Jobs,c ∈ Cores,X ∈ {A,R}  
     presenceOf(phaseX c[j][c]) ⇒  
               ((startOf(phaseX[j]))mod MAF == StartSlotBus[c])  



Claire Pagetti – RTNS 2018 26/28 

Algorithm – Integration strategy  
procedure WCET aware mapping (Config appli)  

 get SPM size 
get nb core, bus slot 
for function : t in appli do  
  get t.period, t.name, t.subfunctions  
  call aiT 

 get t.wcetx, t.sizex (all sections, x ∈ {A, E, R})  
 end for  
 call OPL IBM solver to solve the mapping problem  
 for function : t in appli do  
  get t.core, t.startx  
 end for  
 for core : c in Cores do 

 generate C local scheduler 
 generate new xml file (with the correct mapping)  

 end for 

Step 3: generate 
C schedule on 
each core 



Claire Pagetti – RTNS 2018 27/28 

Experiments 
!  Works well on several controllers, e.g. ROSACE 

!  WATERS 2017 challenge 
‒  1250 runnables, 10000 labels  

preludec 

0m0.114s  

Step 1 OPL Step 3 

1m45.132s  0m0.601s  0m20.481s  

preludec 

0m9.163s  

Step 1 OPL Step 3 

3550m15.365s  0m36,074s  30m22.548s  



Claire Pagetti – RTNS 2018 28/28 

Conclusion 
!  Complete framework from synchronous programs to predictable 

executables 

!  More experiments 
!  Execution on a real target 
!  We followed a “bottom-up” approach # re-think the internal 

representations to support AER and synchronous semantics features 

    Thanks for your attention 


