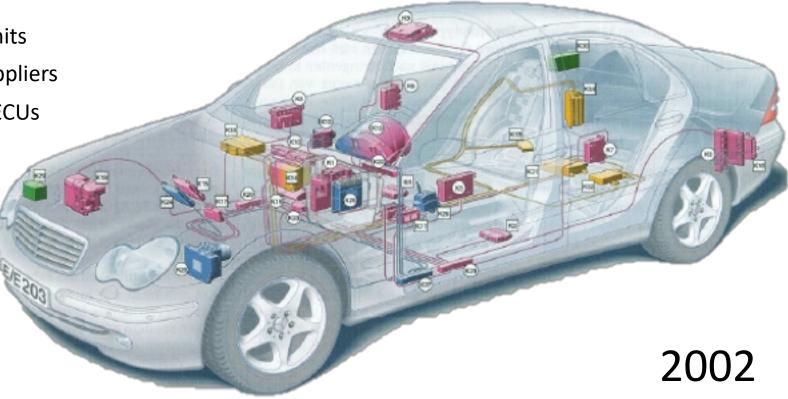
RESPONSE TIME ANALYSIS FOR FIXED PRIORITY SERVERS

ARNE HAMANN, DAKSHINA DASARI, JORGE MARTINEZ, DIRK ZIEGENBEIN

ROBERT BOSCH

Response Time Analysis for Fixed Priority Servers Outline

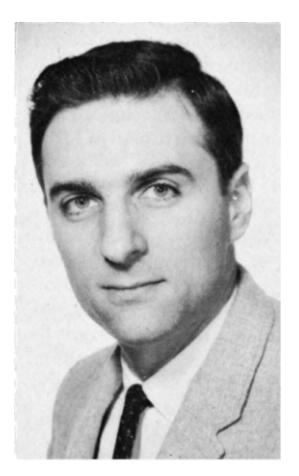
- Motivation
 - ▶ Why are the "industry guys" interested now in this "old" server based scheduling technology?
- Review of the State-of-the-Art
 - Everything has already been solved > 10 years ago! ... really?
- Proposed Response Time Analysis for Fixed Priority Servers
- Experimental Results
- ► Conclusion


Response Time Analysis for Fixed Priority Servers Outline

- Motivation
 - ▶ Why are the "industry guys" interested now in this "old" server based scheduling technology?
- Review of the State-of-the-Art
 - Everything has already been solved > 10 years ago! ... really?
- Proposed Response Time Analysis for Fixed Priority Servers
- Experimental Results
- ► Conclusion

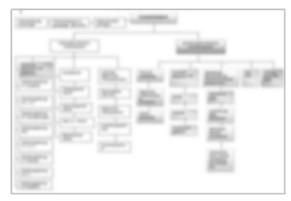
Response Time Analysis for Fixed Priority Servers Automotive Systems – How it always was ...

- ► Up to 100 electronic control units
- ECUs delivered by different suppliers
- ► Only limited "SW sharing" on ECUs
- Mainly integration on network level

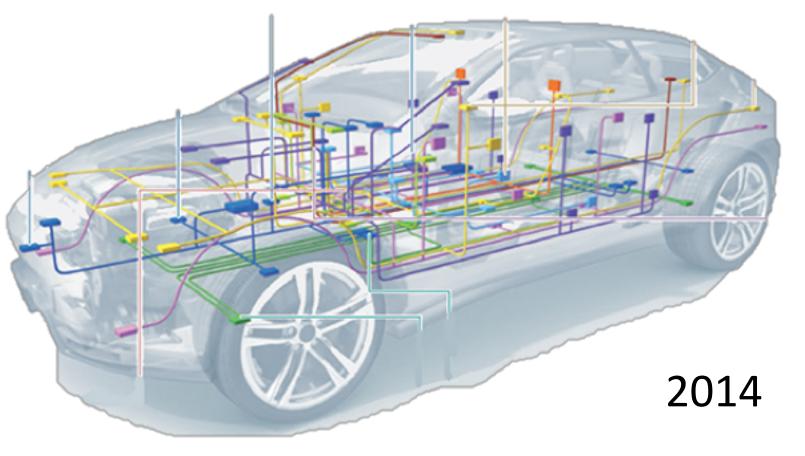


OEMs: "We will reduce the number of ECUs significantly"

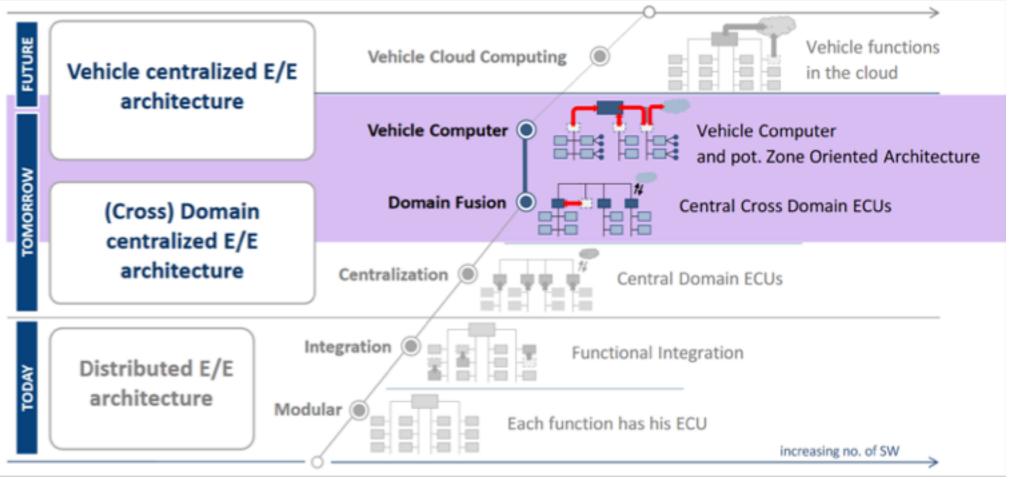
Response Time Analysis for Fixed Priority Servers Conway's Law


Any organization that designs a system will produce a design whose structure is a copy of the organization's communication structure.

Melvin Conway, 1968



Response Time Analysis for Fixed Priority Servers Automotive Systems – ...until recently has been...


Conway's Law at work

Typical Org-Chart

Response Time Analysis for Fixed Priority Servers Automotive Systems – ...but tomorrow not be anymore

Hamann, Dasari, Martinez, Ziegenbein | 2018-10-01

Response Time Analysis for Fixed Priority Servers The Move to Centralized E/E Architectures – Why Now?

- Conway's law overcome by market entry of new OEMs
 - starting on a clean sheet without legacy (organization)
- New functionality requires new powerful HW platforms
 - ► for the first time there exists a "vehicle computer" to absorb functionality
- Most cost-effective way to...
 - Realize fail-operational behavior (as required by e.g. automated driving)
 - Implement cloud connectivity
 - Provide spare resources for upgrades

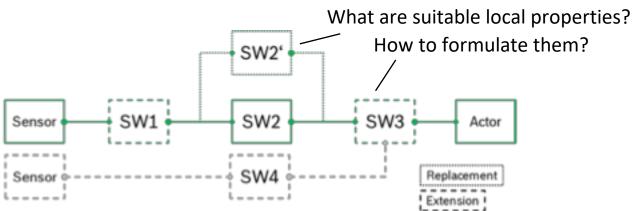
Response Time Analysis for Fixed Priority Servers Challenges – New and Old

- ► Energy & cost efficiency
- Predictability
- Efficient isolation
- Composability

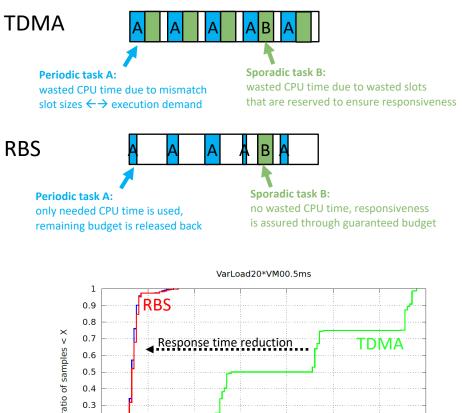
Shift of integration from network to ECU level

- ► System safety
- Migration of legacy code

Hamann, Dasari, Martinez, Ziegenbein | 2018-10-01 © Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights


Response Time Analysis for Fixed Priority Servers Composability is Key to Master Complexity

- "SW Sharing"
 - SW from different suppliers is integrated onto the same platform
 - Need for efficient temporal isolation
 - Composability for the integration needed


- Complexity due to upgrades
 - Adding or exchanging also safety-critical software components during product life-time

Complexity due to variants

 Build 1000s of variant products from one product line

Response Time Analysis for Fixed Priority Servers Efficient Isolation

- TDMA is standard scheduling paradigm for isolation...
 ...but quite inefficient.
- Reservation-based scheduling (RBS) as new scheduling paradigm for integration platforms
 - Budget-based reservations instead of fixed time slices (TDMA)
 - Efficient temporal isolation compared to TDMA due to workconservation and capacity sharing
- Simulations of concrete vehicle computer project show shorter response times & more efficient system utilization

RBS is a suitable abstraction for composability/efficiency in time domain

11 Hamann, Dasari, Martinez, Ziegenbein | 2018-10-01

0.2

Response Time Analysis for Fixed Priority Servers Outline

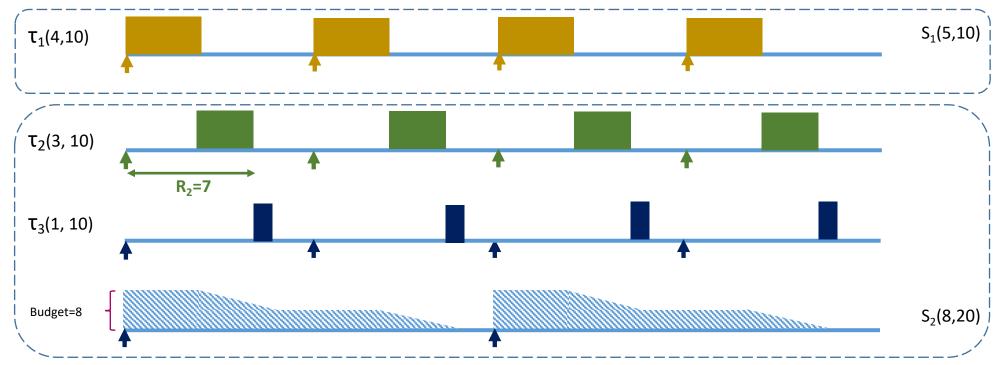
Motivation

▶ Why are the "industry guys" interested now in this "old" server based scheduling technology?

... really?

Review of the State-of-the-Art

Everything has already been solved > 10 years ago!


Proposed Response Time Analysis for Fixed Priority Servers

Experimental Results

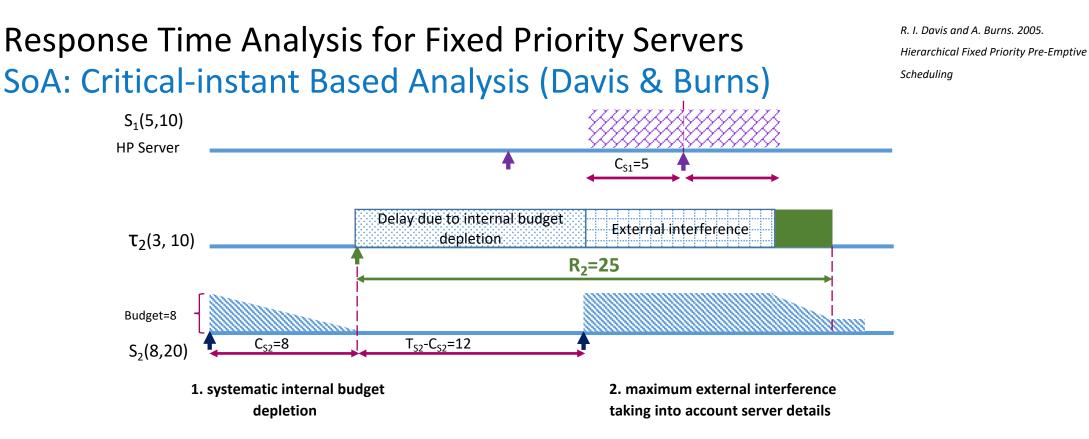
► Conclusion

Response Time Analysis for Fixed Priority Servers Example to Demonstrate Pessimism in SoA

- τ_2 is completed in the first replenishment interval of S_{1...}
- ... and is only delayed by 1 execution of τ₁
- System-wide behavior repeats after hyper period of 20

```
A Hamann, Dasari, Martinez, Ziegenbein | 2018-10-01
```


Response Time Analysis for Fixed Priority Servers SoA: Service Time Bound based Approaches


tbf(t): The maximum time for the server to provide "t" units of service

- Approach is agnostic to other servers/workloads in the system
- In order to provide 3 time units the tbf function computes 27 time units (12 + 12 + 3)
- Worst-case response time of $\tau_2 = 27$ (>> 7)

Insik Shin and Insup Lee. 2008. Compositional Real-time Scheduling Framework with Periodic Model

Hamann, Dasari, Martinez, Ziegenbein | 2018-10-01

- Approach is agnostic to other workloads in the system but considers server parameters and type
- Worst-case response time of Task $\tau_2 = 25$ (>> 7)

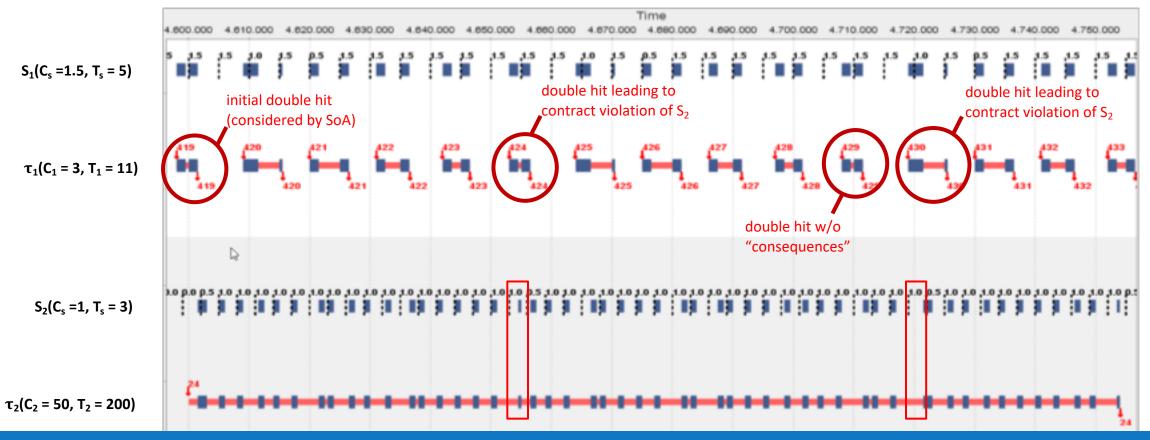
SoA prohibitively pessimistic for application in automotive systems

15 Hamann, Dasari, Martinez, Ziegenbein | 2018-10-01

Response Time Analysis for Fixed Priority Servers SoA: "Optimistic" in Case of Deferrable Servers 1/3

- Why is the SoA "optimistic?"
- ► The SoA assumes that each server is capable of providing **C**_s time units every **T**_s time units
- ► In the presence of Deferrable Servers this "service contract" is not trivial to check/ensure
 - Complex situations where multiple double hits of different deferrable servers coincide are possible depending on the replenishment periods and task arrivals
 - Sometimes the "service contract" might be violated yielding "optimistic" results
 - ► Insidious, since other sources of pessimism (e.g. initial T_s-C_s delay) might compensate for this optimism
- ► To be fair ...
 - System configurations where this happens do not conform to the assumptions of the SoA analysis
 - However, this far from trivial to check, and thus the SoA analysis is not applicable for systems containing Deferrable Servers

¹⁶ Hamann, Dasari, Martinez, Ziegenbein | 2018-10-01


Response Time Analysis for Fixed Priority Servers SoA: "Optimistic" in Case of Deferrable Servers 2/3

- Deferrable Server $S_1(C_s = 1.5, T_s = 5)$
 - Task $\tau_1(T_1 = 11, C_1 = 3)$
- Deferrable Server $S_2(C_s = 1, T_s = 3)$
 - Task $\tau_2(T_2 = 200, C_1 = 50)$
- ► Server reservation 63,33%
- ► Task utilization ~ 52,3%
- Applying the SoA analysis from Davis & Burns yields a worst-case response time of 153 for τ_2
- ▶ Optimistic!! The real worst-case response time of τ_2 is equal to 154

Response Time Analysis for Fixed Priority Servers SoA: "Optimistic" in Case of Deferrable Servers 3/3

Deferrable Servers cannot be treated as black-boxes in analysis

18 Hamann, Dasari, Martinez, Ziegenbein | 2018-10-01

© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

BOSCH

Response Time Analysis for Fixed Priority Servers Outline

Motivation

▶ Why are the "industry guys" interested now in this "old" server based scheduling technology?

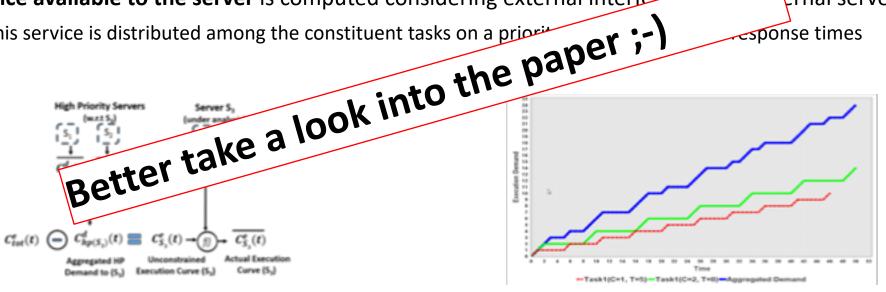
- Review of the State-of-the-Art
- Everything has already been solved > 10 years ago! ... really?

Proposed Response Time Analysis for Fixed Priority Servers

Experimental Results

► Conclusion

Response Time Analysis for Fixed Priority Servers Proposed Analysis


- Based on Service/Demand Curve abstractions
 - ► Not in delta-time but in time domain
- Capable of considering actual interference of other servers and workloads
 - Mixed Server Polling Periodic and Deferrable Server
 - Periodic task with offsets, arbitrary deadlines, backlogged executions
- Scope of the analysis motivated by integration projects
 - Several legacy systems that are OSEK based need to be integrated
 - In future: extension to more irregular activation patterns for upcoming integration scenarios involving heterogeneous applications from different domains
- We assume partitioned scheduling
 - Each reservation can serve multiple task but each task is served by exactly one reservation only
 - Most realistic setting for introducing the technology in industry

Response Time Analysis for Fixed Priority Servers Proposed Analysis – How it works

- Server supply and workloads demands are modeled as curves
- Internal server demand is computed by aggregating the individual workload demands
 - In and constrained to the server specifics (type and parameters)
- External interference is computed by aggregating demand curves of higher priority servers
- Service available to the server is computed considering external interference
 - This service is distributed among the constituent tasks on a priori csponse times

ernal server demand

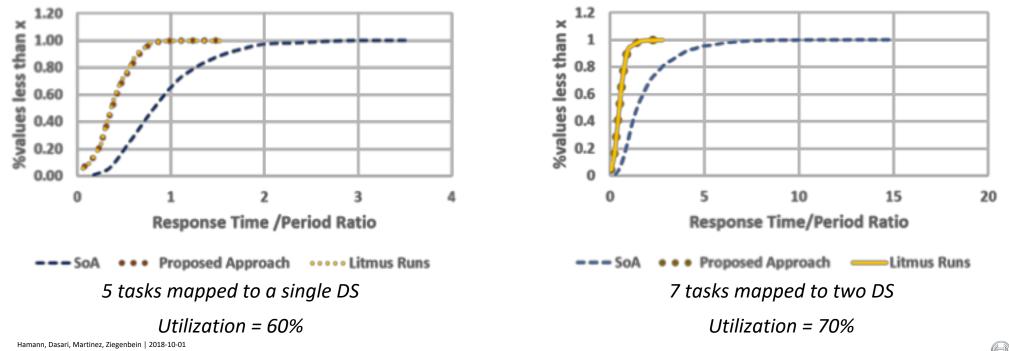
Response Time Analysis for Fixed Priority Servers Outline

Motivation

▶ Why are the "industry guys" interested now in this "old" server based scheduling technology?

- Review of the State-of-the-Art
- Everything has already been solved > 10 years ago! ... really?
- Proposed Response Time Analysis for Fixed Priority Servers

Experimental Results


Conclusion

77 Hamann, Dasari, Martinez, Ziegenbein | 2018-10-01

Response Time Analysis for Fixed Priority Servers Experiments 1/2

- ► 500 periodic task sets per experiment (UUnifast)
- Proposed analysis vs. SoA vs. Litmus runs
- Results visualized with CDFs displaying normalized response times wrt. to activation period

BOSCH

Response Time Analysis for Fixed Priority Servers Experiments 2/2

Response Time Analysis for Fixed Priority Servers Conclusion

- Reservation-based scheduling of high interest for centralized E/E architectures in automotive systems
- SoA in scheduling analysis for reservation-based scheduling too conservative for intended scope of usage
- "Black box" abstraction for Deferrable Servers not reasonable
- Proposed analysis significantly improves precision and extends supported application model

THANK YOU

QUESTIONS ???

31th Euromicro Conference on Real-Time Systems 9-12 July 2019 | Stuttgart, Germany

