ARCHITECTURE-AWARE
MAPPING AND SCHEDULING OF
IMA PARTITIONS
ON MULTI-CORE PLATFORMS

Aishwarya Vasu (), Harini Ramaprasad
(' Southern lllinois University Carbondale
) University of North Carolina at Charlotte

INTEGRATED MODULAR AVIONICS

Deploy multiple software functions with different criticality levels on single CPU

A
Flight Radar Graphics Display Ent. Thraad
User Control
Mode | Application Avionics Application
with any one
criticality level
Level A Flight
Control
Application
PP T1 T2 |00 Tn
Partition OS Level A
Communicating tasks
— or
Partition OS Independent tasks
Kernel
Mode
Architecture Support Package Board Support Package
Hardware

IMA PARTITIONS ON SINGLE CPU HARDWARE

[A1][a2][As]| |[B1]][B2]|B3] [61][62||G3|| |[H1]| H2||H3]
cPM1 cPM2 CPM7 CPMS
|c1||cz||cs|\ /|u||nz||'s|
™. Switch1 Switch 3
CPM3 CPM9
|D1]| D2|| D3| EENER
Switch 2 Switch 4
CPM4 / CPM10
[EL|[e2||e3]|| |[FL][Fr2][F3] [Kka|{k2 | [K3]| |[L1][2][L3]
CPM5 CPM6 CPM11 CPM12

Results in bulky system with high power consumption
To improve Size,Weight & Power considerations

Deploy multiple IMA partitions on one multi-core platform

ARCHITECTURAL ASSUMPTIONS

|dentical cores
Private data cache with support for line level locking
Cores connect to main memory via shared bus
Time Division Multiple Access arbitration policy on shared bus

Data concentrator device on each core to support asynchronous communication

PARTITION AND TASK MODEL

4 Partition P;)

p_i => Activation Period
[Local Scheduler] s_i => Activation Window
Xx_i => Criticality Level
1 2 n I i =>Task set
\[Ti] [Ti] ti)) U_i => Utilization

Task, Tf T;; = Period
> Ci; =Worst Case Exec time

D;; = Relative deadline

PARTITION AND TASK SCHEDULING

1 51 L5 (2) 5 T3
Partition P Partition P2

i i

€— Activation period for both Pl and P2 —>

PI P2 PI
|| T 2 G || 2 o || T

| |

Pl P2
Activation Window Activation Window

OBJECTIVE

Develop algorithm to map IMA partitions onto multi-core platform when:

High criticality partitions may communicate (asynchronous)

2
E—=C) @)
2 « o Cache requirements:
{ <SA, ne, freq > }

High criticality partitions may load and lock specific content in core’s private cache
Certain partition pairs cannot be allocated to the same core
Partition exclusion property Provided by system integrators

May Arise out of Security, Safety and Criticality Considerations or based on Risk Analysis

ALLOCATION ALGORITHM

Weight-based approach:

PE; - Set of pairwise Partition Exclusion weights
Reflect safe or unsafe allocation of partition combinations
Assumed to be provided by system integrators

CO, - Set of pairwise weights for partition P,
Reflect degree of communication with other partitions

CA - Set of pairwise weights for partition P,
Indicate degree of cache conflicts with other partitions

Resultant Weight (p; ;) calculated for every partition pair P; P;

Indicates how suitable it is to allocate P; and P, on same core

ALLOCATION ALGORITHM

Two Phases:
Preprocessing Phase:
Extract & sort Strongly Connected Components (SCCs)

Derive pair-wise weights, core threshold weight

Allocation and Scheduling Phase:

Allocate partitions based on resultant weight between partition pairs

PREPROCESSING PHASE — SCC EXTRACTION
AND SORTING

Extract Strongly Connected Components
(SCCGCs)

<S CCid; Usigc’ Lé%c>

Sort SCCs

To help in keeping communicating

partitions together @ @ < >

Improves Schedulability

PREPROCESSING PHASE — SCC SORTING STRATEGY

SCC Sorting

Configuration Description

SCCs are kept in increasing order of IDs; the partitions within

Configurationl | each SCC are kept in the order in which they were added to
the SCC.

-\ SCCs are sorted in non-increasing order of criticality; the par-
Configuration2 | titions within each SCC are kept in the order in which they

were added to the SCC.

SCCs are sorted in non-increasing order of utilization; the

Configuration3 | partitions within each SCC are kept in the order in which

they were added to the SCC.

SCCs are sorted in non-increasing order of criticality; parti-

Configurationd | tions within each SCC are sorted in non-increasing order of

utilization

SCCs are kept in increasing order of 1Ds; then a DAG traversal

Configuration5 is performed on the SCC Acyeclic graph
Configuration6 SCCs are sorted in non-increasing order of criticality; then a
DAG traversal is performed on the SCC Acyelic graph
. SCCs are sorted in non-increasing order of utilization: then a
Configuration7

DAG traversal is performed on the SCC Acyelic graph

SCCs are sorted in non-increasing order of criticality and
Configuration8 | utilization; then a DAG traversal is performed on the SCC
Acyeclic graph

Isolated vertices on the SCC Acyclic graph is found and
Configuration9 | pushed to the end of the sorted list, to allocate communi-
cating SCCs first

PREPROCESSING PHASE — DERIVATION OF CO,

Define Communication VWeight between partition pairs:

COU =< Coij; COStij >

coni — 1, if Pi, Pj communicate
710, otherwise

nj.j latency
CO'St’i-.f — ntrans lx
1,7

n;; : number of bytes transferred from partition P, to P,

trans

L]
latency
tx)

n : number of bytes transferred per transaction

communication latency incurred per transaction

PREPROCESSING PHASE — DERIVATION OF CA,

Bipartite graph constructed
Partitions on top

Groupings of cache sets on bottom

Edge weight
Represents number of cache lines that partition tries to lock in that group of cache sets
A partition pair cannot have cache conflict if one of two conditions is satisfied:
No cache set that both partitions try to lock
Every cache set that both partitions try to lock has less incoming edges than capacity of set
Cache Conflict Weight

oA (Linesiotal — L-incr.c_:g;?"f lwt)
Lines;y¢q; :Total number of lines in cache Linesgotal
: conflict
Lines; ; THet . Number of conflicting lines in cache for P; and P,

ALLOCATION PHASE - OVERVIEW

Goal: Find number of cores needed to allocate partition set

Two Schemes
NCU Scheme:

Strict consideration of Communication, PE and Cache requirements

Partitions with potential cache conflicts allocated on different cores

CU Scheme:
Consideration of Communication and PE requirements
Cache requirements relaxed = allow conflicting partitions on same core if needed
Subset of conflicting lines are unlocked by one partition

Results in increase of utilization

ALLOCATION PHASE — HIGH CRITICALITY PARTITION
ALLOCATION

Allocate High Ciriticality Partitions based on weights
Define Core Threshold Weight,

Based on recommended weight for individual factors (provided by system integrators)
Partition pairs with resultant weight p;; >= Q can be allocated on same core
For every partition:

Compute resultant weight on all cores (i.e., try allocating partition on each core)

Get information on actual cache conflicts

Remove cores with resultant weights less than Core Threshold Weight, O

Sort remaining cores in non-increasing order of resultant weights

ALLOCATION PHASE — HIGH CRITICALITY PARTITION
ALLOCATION

Iterate over sorted cores
Compute communication costs if needed
Check schedulability of partitions that had change in utilization due to communication
Compute activation window, activation period
Based on an existing work in hierarchical scheduling

If successful, allocate partition to core and end iteration

If core not found, next steps depend on CU / NCU scheme

Alejandro Masrur, Thomas Pfeuffer, Martin Geier, Sebastian Drossler, and Samarijit Chakraborty. 201 1.
"Designing VM schedulers for embedded real-time applications”, In Proceedings of the seventh IEEE/ACM/IFIP
international conference on Hardware/software codesign and system synthesis. ACM, 29-38. G

ALLOCATION PHASE — HIGH CRITICALITY PARTITION
ALLOCATION

NCU Scheme:
“Add” new core to system

Allocate partition to new core if possible after accounting for communication costs
CU Scheme:

Compute cache conflict latency for all partitions conflicting with P,

Update Partition utilization
Sort cores in non-decreasing order of their change in utilization
Re-try cores and check schedulability
If no core found
P. deemed to be non-schedulable

Cache unlocking and utilization changes are reverted to previous values

ALLOCATION PHASE — LOW CRITICALITY PARTITIONS

Allocated using Worst-Fit heuristic
Sort partitions in non-increasing order of criticality and utilization
For every partition P,

Sort cores in non-increasing order of available utilization

Try core with maximum available utilization

“Add” new core if core with maximum available utilization cannot fit partition P,

SIMULATION SETUP — PARTITIONS & TASKS

Multiple partition utilization caps - 0.2,0.3,0.4, 0.5, 0.6 - considered
For each cap, 100 sets of different partition and task characteristics generated

Random directed weighted cyclic graph generated for communication between high
criticality partitions

Degree of Communication (DoC): (0% - 25%), (25% - 50%)
Random memory footprints generated for high criticality partitions

Random Partition Exclusion weights generated between high criticality partitions

SIMULATION SETUP — ARCHITECTURAL DETAILS

Identical cores

Private data cache on each core

Cache line size 32B
Element size 16 B
1 (32 KB)
2 (64 KB)
Associativity 4 (128 KB)
8 (512 KB)
16 (1 MB)
Memory Access latency 50 cycles

COMPARISON OF AVERAGE NUMBER OF CORES BETWEEN NCU
AND CU SCHEMES: DOC = (0%-25%): UTIL CAP = 0.2

Average number of cores when DOC = 0_25 and Partition Util CAP = 0.2

CcuU NCU CcuU NCU cuU NCU CcuU NCU

N
NN

o ®

B

N

Average Number of Cores
=2 T <) R «) I <) |
[<)]

lway 2way 4way 8way
Scheme / Set Associative Cache Configurations
m Configl m Config2 Config3 Configa m Confighs
I Configb I Config7 I Config8 I Config9 e AVerage

NCU
More cores required to host partitions for | way set-associative cache configuration
Reason: increased number of cache conflicts

CU Scheme tries to accommodate partitions by unlocking conflicting cache lines
Uses a less number of cores when compared to NCU scheme

When cache ways are increased, average number of cores decreases
Reason: reduced number of cache conflicts °

COMPARISON OF PERCENTAGE ALLOCATION OF PARTITION SETS
BETWEEN CU AND NCU SCHEMES

Percentage Allocation of Partitions => DoC = 0_25 and Partition Utilization CAP = 0.2

105
5 100

95 - - n

90

85

80‘

7 l [l I I l
cU NCU cU NCU (o[V] cuU

NCU NCU

es

Average Number of Co
~
w

1way 2way 4way 8way
Scheme / Set Associative Cache Configurations

m Configl s Config2 Config3 Configd mmmm Config5

i Config6 e Config7 mmmm Config8 mmmm Config9 = Average

For lower U, (0.2,0.3 and 0.4)
Configs | - 4 schedule lower percentage of partition sets than Configs 5 - 9

Configs | - 4 do not keep communicating partitions together unless they are within same SCC

Beyond Iway cache configuration, no significant difference between performance of CU & NCU schemes

Although there are potential cache conflicts between partitions, not all of them manifest as actual
conflicts even in NCU scheme @

EFFECT OF DEGREE OF COMMUNICATION ON ALLOCATION - CU
SCHEME:
COMPARISON BETWEEN DOC = 0_25% AND DOC = 25_50%

Partition Utilization cap = 0.2

COMPARISON OF PERCENTAGE ALLOCATION FOR DIFFERENT DEGREE OF
COMMUNICATION FOR CU SCHEME, PARTITION UTIL MAX = 0.2

m Configl m Config2 Config3 Configd mConfig5 mConfigb ™ Config7 mConfig8 m Configd

[%)
s
2 N 0
= D o ch\'aa -~ cr\cnmuD
o
E wmmmm m o O mmoo
< 0
a
w
o r\'\
z ©
]
=
< I 3 3
o
9 l
2
© 25_50 25_50
S

1WAY 2WAY

DEGREE OF COMMUNICATION 25% TO 50% AND 50% TO 75%
- SCC SORTING CONFIGURATIONS / CACHE CONFIGURATIONS

As DoC is increased, % of successfully allocated partition sets decreases

Change in % allocation with increased communication is higher for lower U

More number of partitions for lower U => more communicating partitions => increased
communication cost

EFFECT OF DEGREE OF COMMUNICATION ON ALLOCATION -
CU SCHEME:
COMPARISON BETWEEN DOC = 0_25% AND DOC = 25_50%

Partition Utilization cap = 0.6

COMPARISON OF PERCENTAGE ALLOCATION FOR DIFFERENT DEGREE OF
COMMUNICATION FOR CU SCHEME, PARTITION UTIL MAX = 0.6
M Configl m Config2 Config3 Configd ™ Config5 ™ Confige ™ Config7 ™ Config8 ™ Config9

8 8 8
A3 A

OO
o

100

8 88

(e B)} [e2]

=] mmmmg — H‘—cmm‘—c‘—q
[e)]

Q D AN 0 0
c\g @ D L9

25_50 25_50

R
<
o3

8
0
- a

As U increases

% ALLOCATION OF PARTITIONS

1WAY 2WAY

DEGREE OF COMMUNICATION 25% TO 50% AND 50% TO 75%
- SCC SORTING CONFIGURATIONS / CACHE CONFIGURATIONS

Lower number of partitions in a set => Lower communication => DoC less significant

EFFECT OF DEGREE OF COMMUNICATION ON ALLOCATION -
NCU SCHEME:
COMPARISON BETWEEN DOC = 0_25% AND DOC = 25_50%

Partition Utilization cap = 0.2

COMPARISON OF PERCENTAGE ALLOCATION FOR DIFFERENT DEGREE OF
COMMUNICATION FOR NCU SCHEME, PARTITION UTIL MAX = 0.2

m Configl m Config2 Config3 Configd mConfig5 mConfigb mConfig7 mConfig8 m Configd

v
=2
8 SomanRdsHR N TN N8R N o o
= gmmmmmmm n) o R mmgmmm‘”"‘ N O &S
o ©O© O \m X © n
< ~ ~N N 0 ~
o O o o
w n R ©
n
o]
=2
o
'—
<
()
o]
-
2
< 0_25 25_50 0_25 25_50

1WAY 2WAY

DEGREE OF COMMUNICATION 25% TO 50% AND 50% TO 75%
- SCC SORTING CONFIGURATIONS / CACHE CONFIGURATIONS

e Similar trend observed for NCU scheme

EFFECT OF DEGREE OF COMMUNICATION ON ALLOCATION -
NCU SCHEME:
COMPARISON BETWEEN DOC = 0_25% AND DOC = 25_50%

Partition Utilization cap = 0.6

COMPARISON OF PERCENTAGE ALLOCATION FOR DIFFERENT DEGREE OF
COMMUNICATION FOR NCU SCHEME, PARTITION UTIL MAX = 0.6

m Configl m Config2 Config3 Configd m Config5 m Configb M Config7 ™ Config8 ™ Config9

(%]

Z o o o o o o o o

o & o o S S s i) loiRe]

= - — - @ — o o o S o A no o

e D o0 Chchmoo o D a 0 mchoooo

= ~ a) A

< S Yo}

o o)

w x

O [5)

> o

®)

'—

<«

o

(@]

|}

-

<

< 25_50 25_50
1WAY 2WAY

DEGREE OF COMMUNICATION 25% TO 50% AND 50% TO 75%
- SCC SORTING CONFIGURATIONS / CACHE CONFIGURATIONS

Similar trend observed for NCU scheme for higher U

CONCLUSIONS AND FUTURE WORK

Outcome > design space exploration tool — useful during system integration phase
Allocation of partitions is impacted by:

Order in which partitions are chosen for allocation

Degree of Communication (DoC) among partitions
Future Work:

Enhance cache conflict generator to conduct sensitivity studies and observe how
increasing conflicts affect our algorithm’s performance

Consider allocation and scheduling of partitions that share software resources

