
ARCHITECTURE-AWARE
MAPPING AND SCHEDULING OF

IMA PARTITIONS
ON MULTI-CORE PLATFORMS

AishwaryaVasu (1), Harini Ramaprasad (2)

(1) Southern Illinois University Carbondale
(2) University of North Carolina at Charlotte

INTEGRATED MODULAR AVIONICS

• Deploy multiple software functions with different criticality levels on single CPU

IMA PARTITIONS ON SINGLE CPU HARDWARE

• Results in bulky system with high power consumption

• To improve Size, Weight & Power considerations

• Deploy multiple IMA partitions on one multi-core platform

ARCHITECTURAL ASSUMPTIONS

• Identical cores

• Private data cache with support for line level locking

• Cores connect to main memory via shared bus

• Time Division Multiple Access arbitration policy on shared bus

• Data concentrator device on each core to support asynchronous communication

5

PARTITION AND TASK MODEL

6

Partition Pi

Local Scheduler

!"# !"$!"%

p_i => Activation Period
s_i => Activation Window
χ_i => Criticality Level
Γ_i => Task set
U_i => Utilization

Ti,j = Period
Ci,j = Worst Case Exec time
Di,j = Relative deadline

&'(), !"
+

PARTITION AND TASK SCHEDULING

7

!"" !"# !"$!#" !## !#$

Partition P1 Partition P2

t = 0

P1

!"# !"$
5

P2

!#" !#$!#"
12

P1
Activation Window

P2
Activation Window

P1

!"" !"$

Activation period for both P1 and P2

OBJECTIVE

• Develop algorithm to map IMA partitions onto multi-core platform when:

• High criticality partitions may communicate (asynchronous)

• High criticality partitions may load and lock specific content in core’s private cache

• Certain partition pairs cannot be allocated to the same core

• Partition exclusion property

• May Arise out of Security, Safety and Criticality Considerations or based on Risk Analysis
8

Cache	requirements:	
{ <SA, ne, freq > }

Provided	by	system	integrators

ALLOCATION ALGORITHM

• Weight-based approach:

• PEi - Set of pairwise Partition Exclusion weights

• Reflect safe or unsafe allocation of partition combinations

• Assumed to be provided by system integrators

• COi - Set of pairwise weights for partition Pi

• Reflect degree of communication with other partitions

• CAi - Set of pairwise weights for partition Pi

• Indicate degree of cache conflicts with other partitions

• Resultant Weight (ρ",$) calculated for every partition pair Pi , Pj

• Indicates how suitable it is to allocate Pi and Pj on same core

ALLOCATION ALGORITHM

• Two Phases:

• Preprocessing Phase:

• Extract & sort Strongly Connected Components (SCCs)

• Derive pair-wise weights, core threshold weight

• Allocation and Scheduling Phase:

• Allocate partitions based on resultant weight between partition pairs

12

PREPROCESSING PHASE – SCC EXTRACTION
AND SORTING

• Extract Strongly Connected Components
(SCCs)

• < "##$%, '())$% , *())$% >

• Sort SCCs

• To help in keeping communicating
partitions together

• Improves Schedulability

13

PREPROCESSING PHASE – SCC SORTING STRATEGY

14

Criticality

Communication
(across SCCs)

Utilization

Communication
(within SCCs)

PREPROCESSING PHASE – DERIVATION OF COI

• Define Communication Weight between partition pairs:

• !"#$ = < '(#$, '(*+#$ >

• '(#$ = -
1, /0 1/, 12 '(3345/'6+7
0, (+ℎ7:;/*7

• n=,> ∶ number of bytes transferred from partition Pi to Pj

• n=,>@ABCD : number of bytes transferred per transaction

• m@F
GB@HCIJ: communication latency incurred per transaction

PREPROCESSING PHASE – DERIVATION OF CAI

• Bipartite graph constructed

• Partitions on top

• Groupings of cache sets on bottom

• Edge weight

• Represents number of cache lines that partition tries to lock in that group of cache sets

• A partition pair cannot have cache conflict if one of two conditions is satisfied:

• No cache set that both partitions try to lock

• Every cache set that both partitions try to lock has less incoming edges than capacity of set

• Cache Conflict Weight

• !"#$%&'&() : Total number of lines in cache

• !"#$%*,,-'./)*-& : Number of conflicting lines in cache for Pi and	Pj
16

ALLOCATION PHASE - OVERVIEW

• Goal: Find number of cores needed to allocate partition set

• Two Schemes

• NCU Scheme:

• Strict consideration of Communication, PE and Cache requirements

• Partitions with potential cache conflicts allocated on different cores

• CU Scheme:

• Consideration of Communication and PE requirements

• Cache requirements relaxed à allow conflicting partitions on same core if needed

• Subset of conflicting lines are unlocked by one partition

• Results in increase of utilization
17

ALLOCATION PHASE – HIGH CRITICALITY PARTITION
ALLOCATION

• Allocate High Criticality Partitions based on weights

• Define Core Threshold Weight, Ω

• Based on recommended weight for individual factors (provided by system integrators)

• Partition pairs with resultant weight ρ",$ >= Ω can be allocated on same core

• For every partition:

• Compute resultant weight on all cores (i.e., try allocating partition on each core)

• Get information on actual cache conflicts

• Remove cores with resultant weights less than Core Threshold Weight, Ω

• Sort remaining cores in non-increasing order of resultant weights

18

ALLOCATION PHASE – HIGH CRITICALITY PARTITION
ALLOCATION

• Iterate over sorted cores

• Compute communication costs if needed

• Check schedulability of partitions that had change in utilization due to communication

• Compute activation window, activation period

• Based on an existing work in hierarchical scheduling

• If successful, allocate partition to core and end iteration

• If core not found, next steps depend on CU / NCU scheme

19

Alejandro Masrur, Thomas Pfeuffer, Martin Geier, Sebastian Drössler, and Samarjit Chakraborty. 2011.
"Designing VM schedulers for embedded real-time applications", In Proceedings of the seventh IEEE/ACM/IFIP
international conference on Hardware/software codesign and system synthesis. ACM, 29–38.

ALLOCATION PHASE – HIGH CRITICALITY PARTITION
ALLOCATION

• NCU Scheme:

• “Add” new core to system

• Allocate partition to new core if possible after accounting for communication costs

• CU Scheme:

• Compute cache conflict latency for all partitions conflicting with Pi

• Update Partition utilization

• Sort cores in non-decreasing order of their change in utilization

• Re-try cores and check schedulability

• If no core found

• Pi deemed to be non-schedulable

• Cache unlocking and utilization changes are reverted to previous values
20

ALLOCATION PHASE – LOW CRITICALITY PARTITIONS

• Allocated using Worst-Fit heuristic

• Sort partitions in non-increasing order of criticality and utilization

• For every partition Pi

• Sort cores in non-increasing order of available utilization

• Try core with maximum available utilization

• “Add” new core if core with maximum available utilization cannot fit partition Pi

21

SIMULATION SETUP – PARTITIONS & TASKS

• Multiple partition utilization caps - 0.2, 0.3, 0.4, 0.5, 0.6 - considered

• For each cap, 100 sets of different partition and task characteristics generated

• Random directed weighted cyclic graph generated for communication between high
criticality partitions

• Degree of Communication (DoC): (0% - 25%), (25% - 50%)

• Random memory footprints generated for high criticality partitions

• Random Partition Exclusion weights generated between high criticality partitions

22

SIMULATION SETUP – ARCHITECTURAL DETAILS

• Identical cores

• Private data cache on each core

23

Parameter Size

Cache line size 32 B
Element size 16 B

Associativity

1 (32 KB)
2 (64 KB)
4 (128 KB)
8 (512 KB)
16 (1 MB)

Memory Access latency 50 cycles

COMPARISON OF AVERAGE NUMBER OF CORES BETWEEN NCU
AND CU SCHEMES: DOC = (0%-25%): UTIL CAP = 0.2

25

• NCU
• More cores required to host partitions for 1 way set-associative cache configuration
• Reason: increased number of cache conflicts

• CU Scheme tries to accommodate partitions by unlocking conflicting cache lines
• Uses a less number of cores when compared to NCU scheme

• When cache ways are increased, average number of cores decreases
• Reason: reduced number of cache conflicts

COMPARISON OF PERCENTAGE ALLOCATION OF PARTITION SETS
BETWEEN CU AND NCU SCHEMES

28

• For lower !", (0.2, 0.3 and 0.4)
• Configs 1 - 4 schedule lower percentage of partition sets than Configs 5 - 9
• Configs 1 - 4 do not keep communicating partitions together unless they are within same SCC

• Beyond 1way cache configuration, no significant difference between performance of CU & NCU schemes
• Although there are potential cache conflicts between partitions, not all of them manifest as actual

conflicts even in NCU scheme

EFFECT OF DEGREE OF COMMUNICATION ON ALLOCATION – CU
SCHEME:

COMPARISON BETWEEN DOC = 0_25% AND DOC = 25_50%

31

Partition Utilization cap = 0.2

• As DoC is increased, % of successfully allocated partition sets decreases

• Change in % allocation with increased communication is higher for lower !"
• More number of partitions for lower !" => more communicating partitions => increased

communication cost

EFFECT OF DEGREE OF COMMUNICATION ON ALLOCATION –
CU SCHEME:

COMPARISON BETWEEN DOC = 0_25% AND DOC = 25_50%

32

Partition Utilization cap = 0.6

• As !" increases
• Lower number of partitions in a set => Lower communication => DoC less significant

EFFECT OF DEGREE OF COMMUNICATION ON ALLOCATION –
NCU SCHEME:

COMPARISON BETWEEN DOC = 0_25% AND DOC = 25_50%

33

Partition Utilization cap = 0.2

• Similar trend observed for NCU scheme

EFFECT OF DEGREE OF COMMUNICATION ON ALLOCATION –
NCU SCHEME:

COMPARISON BETWEEN DOC = 0_25% AND DOC = 25_50%

34

Partition Utilization cap = 0.6

• Similar trend observed for NCU scheme for higher !"

CONCLUSIONS AND FUTURE WORK

• Outcome à design space exploration tool – useful during system integration phase

• Allocation of partitions is impacted by:

• Order in which partitions are chosen for allocation

• Degree of Communication (DoC) among partitions

• Future Work:

• Enhance cache conflict generator to conduct sensitivity studies and observe how
increasing conflicts affect our algorithm’s performance

• Consider allocation and scheduling of partitions that share software resources

